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The slogan ‘Evidence of evidence is evidence’ may sound plausible, but what it means is far 

from clear. It has often been applied to connect evidence in the current situation to 

evidence in another situation. The relevant link between situations may be diachronic 

(White 2006: 538): is present evidence of past or future evidence of something present 

evidence of that thing? Alternatively, the link may be interpersonal (Feldman 2007: 208): is 

evidence for me of evidence for you of something evidence for me of that thing? Such inter-

perspectival links have been discussed because they can destabilize inter-perspectival 

disagreements. In their own right they have become the topic of a lively recent debate 

(Fitelson 2012, Feldman 2014, Roche 2014, Tal and Comesaña 2014). 

 This chapter concerns putative intra-perspectival evidential links. Roughly, is present 

evidence for me of present evidence for me of something present evidence for me of that 

thing? Unless such a connection holds between a perspective and itself, it is unlikely to hold 

generally between distinct perspectives. Formally, the single-perspective case is also much 

simpler to study. Moreover, it concerns issues about the relation between first-order and 

higher-order evidence, the topic of this volume. 

 The formulations in this chapter have not been tailored for optimal fit with previous 

discussions. Rather, they are selected because they make an appropriate starting-point, 

simple, significant, and not too ad hoc. In particular, I will not discuss existential 

generalizations to the effect that a given hypothesis has some evidential support, in the 

sense that some part of the evidence supports it. Such principles are usually too weak to be 

of interest, since from unequivocally negative evidence one can typically carve out a 

gerrymandered fragment that in isolation points the opposite way—for instance, by 

selecting a biased sample of data points. Instead, the focus will be on the total evidence.  

For the sake of rigour and clarity, evidence will be understood in probabilistic terms. 

On some probabilistic readings of the slogan ‘Evidence of evidence is evidence’, it can be 

straightforwardly refuted by standard calculations of probabilities for playing cards, dice, 

and so on. For example, it might be interpreted as saying that if p is evidence for q, and q is 

evidence for r, then p is evidence for r. Counterexamples to such transitivity principles are 

easy to construct, whether ‘p is evidence for q’ is understood as ‘p raises the probability of 

q’ or as ‘the conditional probability of q on p’ is high (see also Fitelson 2012). This chapter is 

not concerned with principles refuted by standard first-order probabilistic calculations. The 

principles it discusses all involve readings of the phrase ‘evidence of evidence’ in terms of 
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second-order evidence, evidence for propositions about evidence: more specifically, 

second-order probabilities, probabilities of propositions about probabilities.  

Formal models will be used throughout, within the framework of epistemic logic, 

since it provides a natural way of integrating first-level epistemic conditions (such as 

evidence of a coming storm) and second-level epistemic conditions (such as evidence of 

evidence of a coming storm). An integrated framework is needed to give a fair chance to the 

idea that evidence of evidence is evidence. We will be asking questions like this: if the 

probability on the evidence that the probability on the evidence of a hypothesis H is at least 

90% is itself at least 90%, under what conditions does it follow that the probability on the 

evidence of H is indeed at least 90%, or at least more than 0%?? Such principles may remind 

one of synchronic analogues of more familiar probabilistic reflection principles, and turn out 

to be sensitive to similar structural features of the underlying epistemic relations (compare 

Weisberg 2007 and Briggs 2009). 

 Bridge principles between first-level and higher-level epistemic conditions often turn 

out to imply versions of highly controversial principles in standard epistemic logic, most 

notably the contentious principle of so-called positive introspection, that if one knows 

something, one knows that one knows it, and the more obviously implausible principle of 

negative introspection, that if one doesn’t know something, one knows that one doesn’t 

know it (Williamson 2000: 228-237; 2014). To anticipate, various natural formalizations of 

the intra-perspectival principle that evidence of evidence is evidence also turn out to have 

such connections, although more complicated ones than usual. Since the overall argument 

of this chapter is against those principles, it is dialectically fair to use a formal framework 

that presents them with no unnecessary obstacles. 

 

 

1. The formal framework 

 

For clarity, the formal framework will first be explained, although some readers will already 

be familiar with it. The underlying models come from modal logic, as adapted to single-

agent epistemic logic (Hintikka 1962), to which we can add the required probabilistic 

structure (Williamson 2000). 

For present purposes, a frame is an ordered pair <W, R>, where W is a nonempty set 

and R is a dyadic relation over W, a set of ordered pairs of members of W. Informally, we 

conceive the members of W as worlds, or as relevantly but non-maximally specific states of 

affairs, mutually exclusive and jointly exhaustive. We model (coarse-grained) propositions as 

subsets of W; thus the subset relation corresponds to entailment, set-theoretic intersection 

to conjunction, union to disjunction, complementation in W to negation, and so on. If wX, 

the proposition X is true in the world w; otherwise, X is false in w. We use the relation R to 

model evidence for a given agent (expressed by ‘one’) at a given time (expressed by the 

present tense). More precisely, if w and x are worlds (w, xW) then Rwx (<w, x> R) if and 

only if it is consistent with one’s total evidence in w that one is in x. We define the 

proposition R(w) as {x: Rwx}, which is the strongest proposition to follow from one’s 

evidence in w; in effect, R(w) is one’s total evidence in w. Since our interest concern here is 

in what follows from one’s evidence, which is automatically closed under multi-premise 
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entailment, concerns about the logical omniscience imposed by such models are less 

pertinent than elsewhere in epistemic logic.   

At the very least, the total evidence should be consistent, otherwise it both entails 

everything and excludes everything. In a probabilistic setting, we want to conditionalize on 

the evidence, which makes no obvious sense when the evidence is the empty set of worlds. 

Thus we require that R(w) ≠ {}; in other words, the relation R is serial in the sense that each 

world has it to some world. The epistemic interpretation motivates the formal development 

but plays no further role in it. Formally, we will generalize over every (finite) nonempty set 

W of entities of any kind and every serial relation R over them. 

 We need to add probabilities to the frames. We assume W to be finite in order to 

avoid the complications inherent in infinite probability distributions. There is enough 

complexity and variety in finite probability distributions for most epistemological modelling 

purposes. A probabilistic frame is an ordered triple <W, R, Pr> where <W, R> is a frame, W is 

finite, R is serial, and Pr is a probability distribution over W. Thus Pr maps each subset of W 

to a real number between 0 and 1, where Pr(W) = 1 and Pr(X Y) = Pr(X) + Pr(Y) whenever X 

and Y are disjoint. We impose one further constraint on Pr: it is regular, in the sense that 

Pr(X) = 0 only if X = {} (the converse follows from the other axioms). The reason for that 

constraint will emerge shortly. Informally, we regard Pr as the prior probability distribution. 

For present purposes, it need not be absolutely prior; it may embody one’s previously 

acquired background information.  

Posterior probabilities in a world w are defined by conditioning Pr on one’s total 

evidence in w: thus the posterior probability of X in w, the probability Prw(X) of X on the 

evidence in w, is the prior conditional probability of X on R(w). These conditional 

probabilities are themselves defined in the usual way as ratios of unconditional 

probabilities, giving this equation: 

 

EVPROB  Prw(X) = Pr(X | R(w)) = Pr(X R(w))/Pr(R(w)) 

 

Of course, the ratio in EVPROB is well-defined only if Pr(R(w)) > 0. Since R is serial, R(w) is 

nonempty, but we still need regularity to conclude, from that, that Pr(R(w)) > 0. That is why 

the constraint was imposed. Informally, the probability of a proposition X on one’s evidence 

in w is the weighted proportion of worlds consistent with one’s evidence in w where X is 

true. 

 A stronger constraint on Pr than regularity is uniformity, which says that for any two 

worlds w and x, Pr({w}) = Pr({x}): all worlds have equal weight. In a finite probability space, 

uniformity entails regularity; uniformity equates Pr(X) with the unweighted proportion of 

members of X that are members of W. We do not impose uniformity, despite the simplicity 

it brings. For the members of W may represent less than maximally specific possibilities, 

which may themselves vary in their level of specificity: in that case, uniformity in the model 

would require non-uniformity at a level of resolution finer than that represented in the 

model. Permitting non-uniformity makes for more robust results. 

 Mathematically, this probabilistic framework is just like the one in Williamson 2000 

and 2014. However, there R(w) was informally explained as what the agent knows in w, 

rather than as the evidence in w. This chapter does not impose the equation E=K of total 
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evidence with total knowledge. The reason is not any loss of confidence in E=K, but simply a 

preference for addressing a wider range of views of evidence. Obviously, E=K remains 

compatible with the present framework. A formal correlate of this difference is that since 

knowledge entails truth, if R(w) is what the agent knows then wR(w), so R is reflexive. All 

reflexive relations are serial but not vice versa. Even without E=K, the assumption that 

evidence consists of true propositions is attractive (Williamson 2000: 201-2). Nevertheless, 

for the sake of generality, we do not impose it. Thus the framework allows one’s total 

evidence to be what one reasonably believes, rather than knows, so long as one’s 

reasonable beliefs are jointly consistent. 

 The framework automatically includes within the models non-trivial propositions 

about probabilities on the evidence. For instance, for any proposition X and real number c, 

we may define P≥c[X] as {w: Prw(X) ≥ c}, the proposition that the probability on one’s 

evidence of X is at least c, which may be true in some worlds and false in others. Thus P≥c[X] 

itself receives a probability Prw(P≥c[X]) on one’s evidence in a world w, so P≥c[P≥c[X]] is in turn 

well-defined: it is the proposition that the probability on one’s evidence that the probability 

on one’s evidence of X is at least c is itself at least c. Other propositions about probabilities 

can be defined similarly; for instance, P>c[X] is {w: Prw(X) > c}, the proposition that the 

probability on one’s evidence of X is greater than c. 

 When interpreting English renderings in which epistemic terms such as ‘one’s 

evidence’ and ‘the probability of X on one’s evidence’ occur within the scope of further 

epistemic vocabulary, it is crucial to remember that the embedded occurrences are here to 

be read de dicto rather than de re. Thus even if the probability of X on one’s evidence is 

70%, one cannot substitute ‘70%’ for ‘the probability of X on one’s evidence’ without loss in 

the scope of another probability operator, for doing so would in effect presuppose that it is 

certain on one’s evidence that the probability of X on one’s evidence is 70%. To read the 

terms for probability de re would preclude by fiat the non-rigid behaviour that represents 

uncertainty in an epistemic modal setting, and so prevent us from addressing the very 

epistemic issues we want to discuss. De dicto readings will therefore be understood 

throughout. They are unambiguously written into the formal notation, but one must bear 

that in mind when paraphrasing formulas into natural language. 

 Of course, the setup just described is not the only formal framework conceivable for 

theorizing about probabilities on evidence of probabilities on evidence. For instance, one 

could assign each world its own probability distribution, with no requirement that they all 

be derived by conditionalization on one’s evidence in the world from a single prior 

probability distribution. However, that liberalization would have no chance of vindicating 

any interesting version of the idea that evidence of evidence is evidence. The present 

framework is simple, perspicuous, and tightly integrated. In particular, it avoids the ad hoc 

move of postulating a second probability distribution to handle second-order probabilities. 

In such respects it provides a comparatively hospitable environment for ‘evidence of 

evidence’ principles. If they do not thrive here, they are not robust. The framework is also 

mathematically tractable, permitting us to prove general results and through them to 

understand what the successes and failures of ‘evidence of evidence’ principles depend on.  

 We can use the framework to formulate principles of forms such as this: 
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 (i)   P≥a[P≥b[X]]   P≥c[X] 

 

This says that whenever the probability on the evidence that the probability on the evidence 

of X is at least b is itself at least a, the probability on the evidence of X is at least c. Such an 

inclusion is valid on a finite serial frame <W, R> if and only if it holds for every proposition X

W and every regular probability distribution Pr over W. Given real numbers a, b, c 

between 0 and 1, under what conditions on <W, R> is such a principle valid on that frame? 

Section 2 starts to explore the formal prospects for such principles, and to assess the 

epistemological issues that arise when they are interpreted in terms of evidence. 

 

 

2. Positive and negative introspection for evidence 

 

Here is a simple example of what can go wrong with evidence of evidence principles. 

Consider a frame <W, R> with just three worlds, where W = {0, 1, 2}, R(0) = {1}, R(1) = R(2) = 

{2} (so R is serial). Informally, if one is in world 1, it is certain on one’s evidence that one is in 

world 1; if one is in world 1 or world 2, it is certain on one’s evidence that one is in world 2. 

Let the proposition X be {2}, true in world 2 and false in the other two worlds. Then P≥1[X] is 

true in world 1, so P≥1[P≥1[X]] is true in world 0. But in world 0, one is certain on one’s 

evidence not to be in world 2, so P>0[X] is false. In this frame, even the weakest non-trivial 

evidence of evidence principles fail, because X is certain on one’s evidence to be certain on 

one’s evidence to be true, but also certain on one’s evidence to be false. A fortiori, any 

principle of the form P≥a[P≥b[X]]   P>c[X] (for fixed a, b, c between 0 and 1) fails in this 

frame. 

 A relevant feature of that frame is that R is irreflexive; neither world 0 nor world 1 

has R to itself. In both those worlds, one’s total evidence is a falsehood. That is why 

probability 1 on one’s evidence fails to entail truth. In a reflexive frame, if a proposition X is 

false at a world w, one’s evidence R(w) contains w, so the probability of {w} conditional on 

R(w) is Pr({w})/Pr(R(w)), which is nonzero because Pr({w}) is nonzero, since Pr is regular, so 

the probability of X conditional on R(w) is less than 1 because X excludes {w}. Thus in a 

reflexive frame, both these principles hold: 

 

(ii) P≥1[P≥b[X]]   P≥b[X] 

 

(iii) P≥a[P≥1[X]]   P≥a[X] 

 

For P≥1[Y] entails Y for any proposition Y; what is certain is true. If a proposition is certain on 

one’s evidence to be likely to some degree on one’s evidence, then it is likely to that degree 

on one’s evidence; similarly, if it is likely to some degree on one’s evidence to be certain on 

one’s evidence, then it is likely to at least that degree on one’s evidence. By contrast, in any 

non-reflexive frame, P≥1 is not a truth-entailing operator, for if a world w fails to have R to 

itself, then the proposition W−{w} (true everywhere except w) is true throughout R(w), and 

so certain on one’s evidence in w, even though it is false in w. In effect, for regular 
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probability distributions, P≥1 is simply the familiar necessity operator □, and reflexivity 

corresponds to the T axiom □p   p. 

The principles (ii) and (iii) demonstrate that one should resist any temptation to 

regard a requirement for evidence to be true as automatically ‘externalist’, and so in conflict 

with ‘internalist’ evidence of evidence principles. For the truth axiom entails the evidence of 

evidence principles (ii) and (iii). 

 Another relevant feature of the above frame is that R is non-transitive: world 0 has R 

to world 1, and world 1 has R to world 2, but world 0 does not have R to world 2. In modal 

logic, transitivity corresponds to the 4 axiom □p   □□p, which in epistemic logic is 

interpreted as the positive introspection principle that if one knows, one knows that one 

knows. In the present setting, the modal operator □ is interpreted as ‘one’s evidence entails 

that …’, which is equivalent to ‘it is certain on one’s evidence that …’ (P≥1), because the 

regularity of the prior probability distribution guarantees that the conditional probability of 

a proposition X on one’s evidence R(w) is 1 if and only if R(w) entails (is a subset of) X. Thus 

transitivity corresponds to the principle that if one’s evidence entails a proposition, then 

one’s evidence entails that one’s evidence entails that proposition, or equivalently that if 

the proposition is certain on one’s evidence, then it is certain on one’s evidence to be 

certain on one’s evidence. So stated, the principle is not of the form we have been 

considering, since the second-level condition is in the consequent rather than the 

antecedent. However, the validity of the 4 axiom is equivalent in any frame to the validity of 

its contraposed form ◊◊p   ◊p, where the modal operator ◊ is interpreted in the present 

setting as ‘it is consistent with one’s evidence that …’, which is equivalent to ‘there is a 

nonzero probability on one’s evidence that …’ (P>0), by regularity again. For any frame 

<W, R> and real number a between 0 and 1, the probability operators P>a and P≥1−a are dual 

to each other in a sense analogous to that in which ◊ and □ are: just as ¬□¬p is equivalent to 

◊p and ¬◊¬p is equivalent to □X, so W−P≥1−a[W−X] = P>a[X] and W−P>a[W−X] = P≥1−a[X] (since 

Prw(W−X) = 1−Prw[X]). In particular, for regular probability distributions, the operator P>0 is 

simply the possibility operator ◊. Thus the transitivity of R is necessary and sufficient for the 

validity on the frame of this principle: 

  

Positive introspection   P>0[P>0[X]]   P>0[X] 

 

If it is consistent with one’s evidence that X is consistent with one’s evidence, then X is 

consistent with one’s evidence; nonzero evidence of nonzero evidence is nonzero 

evidence—though of course in a sense in which nonzero evidence for X is compatible with 

much stronger evidence against X. 

 Perhaps surprisingly, the validity of Positive Introspection on a frame <W, R> is 

equivalent to the validity of much weaker principles on that frame, of this form (for 

0 < a < 1): 

 

Weaka Positive Introspection   P≥a[P≥a[X]]   P>0[X] 

 

For example, Weak99% Positive Introspection says that if it is at least 99% probable on one’s 

evidence that a given proposition is at least 99% probable on one’s evidence, then that 
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proposition is more than 0% probable on one’s evidence. Even that very mild-looking 

principle is valid only on transitive frames, and so requires the full power of Positive 

Introspection (proposition 1.0; all such references are to the appendix).  

Weaka Positive Introspection is weaker than Positive Introspection in the sense that 

the former may hold on a given non-transitive frame <W, R> for every proposition XW 

while the latter does not for a given regular probability distribution over W. But for Weaka 

Positive Introspection to be valid on <W, R> is for it to hold for every proposition XW for 

every regular probability distribution over W. Generalizing over probability distributions 

erases the sensitivity to the quantitative threshold a in Weaka Positive Introspection 

because a sufficiently non-uniform distribution will exceed the threshold in any case of non-

transitivity. We will encounter other examples below where the condition for a principle to 

be valid is strikingly insensitive to the specific numerical value of a probabilistic threshold, 

because one can concentrate almost all the weight of prior probability on a few worlds that 

behave ‘badly’ in the relevant way. Even requiring the prior probability distribution to be 

uniform would make less difference than one might expect, because one can often simulate 

the effect of a highly non-uniform distribution with a uniform distribution, by replacing 

individual worlds with clusters of worlds mutually indiscernible with respect to the 

accessibility relation R, where the comparative sizes of the clusters approximates the 

comparative non-uniform probabilities of the original worlds.  

 If one reads the positive introspection principle for evidence carelessly, it may sound 

more or less trivial. But it is not, for the truth of one’s total evidence proposition X may not 

entail that X is at least part of one’s total evidence. Given the equation E=K of one’s total 

evidence with one’s total evidence, positive introspection for evidence reduces to positive 

introspection for knowledge.1 Elsewhere, I have argued against the latter principle 

(Williamson 2000: 114-130; 2014). Thus I am committed to rejecting positive introspection 

for evidence, though I will not rehearse the details of the argument here. Of course, positive 

introspection for knowledge still has defenders (Greco 2014; see also the exchange between 

Hawthorne and Magidor 2009; 2011 and Stalnaker 2009). Further reason to doubt positive 

introspection for evidence will emerge at the end of this section. However, the principle 

requires no extensive critique here, for salient evidence of evidence principles turn out to 

imply even more obviously problematic variants on negative introspection principles.  

 Negative introspection is equivalent to a principle formulated in the required way, 

with the second-level condition in the antecedent: if for all one knows one knows 

something, then one does know that thing. In the language of modal logic, that is the 5 

axiom ◊□p   □p. It is valid on all and only frames where R is euclidean, in the sense that 

any points seen from the same point see each other (if Rxy and Rxz then Ryz). Since our 

evidential interpretation of the frame makes ◊ equivalent to P>0 and □ to P≥1, negative 

introspection amounts to this principle: 

 

Negative Introspection P>0[P≥1[X]]   P≥1[X] 

 

If it is consistent with one’s evidence that one’s evidence entails X, then one’s evidence does 

entail X. 
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 Negative introspection for knowledge has been recognized by most philosophically 

sophisticated formal epistemologists since Hintikka (1962) as implausible. For example, 

consider a good case in which you know by sight that there is an apple on the table, and a 

corresponding bad case in which you appear to yourself to be in the good case, and still 

believe that there is an apple on the table, but your belief is false, because what looks like 

an apple is just a wax replica. By hypothesis, the bad case is indistinguishable from the 

inside from the good case. In the bad case, for all you know you are in the good case, so for 

all you know you know that there is an apple on the table; but you do not know that there is 

an apple on the table, for there is no apple on the table. Thus the bad case is a 

counterexample to negative introspection for knowledge. Given the limitations of our 

cognitive powers, the possibility of such mild sceptical scenarios follows almost inevitably 

from an anti-sceptical view of human knowledge. To idealize away such possibilities is to 

turn one’s back on one of the main phenomena that epistemology is tasked with coming to 

understand.  

Nevertheless, much mainstream epistemic logic outside philosophy, in computer 

science and theoretical economics, has continued to treat negative introspection for 

knowledge as axiomatic. This has done less harm than one might have expected, because 

the focus of such work has been on multi-agent epistemic logic, which is mainly concerned 

with what agents know about what other agents know, and iterations thereof, in particular 

with common knowledge. When modelling multi-agent epistemic phenomena, it is 

legitimate to idealize away single-agent epistemic complications, because they constitute 

noise with respect to the intended object of study. Similarly, in modelling dynamic epistemic 

phenomena, it is legitimate to idealize away synchronic epistemic complications, because 

they too constitute noise with respect to the intended object of study. But an idealization 

may be legitimate at one level of magnification and not at another: the astronomer can 

sometimes treat planets as point masses; the geologist cannot. Mainstream epistemology 

turns up the magnification on individual epistemic processes to a level at which negative 

introspection for knowledge is no longer a legitimate idealization. 

 What is the relation between negative introspection for knowledge and for 

evidence? Given E=K, the two principles stand or fall together. In the bad case, for all one 

knows one knows X, but one doesn’t know X; similarly, it is consistent with one’s evidence 

that one’s evidence entails X, but one’s evidence doesn’t entail X. Even if one’s evidence is 

restricted to the contents of one’s non-inferential observational knowledge, mild sceptical 

scenarios can still arise for it, at least on the assumption that the contents of observation 

can concern one’s physical environment. If all evidence must be true, then negative 

introspection requires all evidence to be in principle immune to sceptical scenarios, for 

example by concerning mental states that are essentially just as they appear to be to the 

agent. Such radical foundationalism depends on an antiquated view of the mind which there 

is no need to argue against here. 

 The position is more complex for views that allow false evidence. If my evidence may 

entail that there is an apple on the table, even though there is no apple on the table, then 

one’s evidence in the bad case may include the proposition that there is an apple on the 

table after all. For instance, suppose that one’s evidence is just what one rationally takes for 

granted, and that one can rationally take for granted something false. Then, in effect, 
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negative introspection says that if it is consistent with what one rationally takes for granted 

that what one rationally takes for granted entails X, then what one rationally takes for 

granted does entail X. In contraposed form: if what one rationally takes for granted does not 

entail X, then what one rationally takes for granted entails that what one rationally takes for 

granted does not entail X. How to assess that principle may not be immediately obvious. 

 Although negative introspection does not imply that one’s evidence is true, it does 

imply that one’s evidence entails that one’s evidence is true. More precisely, the 

consequence is that one’s evidence entails that if one’s evidence entails X, then X is true. 

Some such conditionals will be amongst one’s evidence’s false entailments, if it has any. 

Negative introspection implies the principle because the former corresponds to the 

euclidean frame condition that if Rxy and Rxz then Ryz; putting z = y gives the condition that 

if Rxy then Ryy, which we may restate by calling R quasi-reflexive: every seen world sees 

itself. In modal logic, quasi-reflexivity corresponds to the quasi-truth principle □(□p   p). It 

follows from negative introspection in any normal modal logic.2,3 Whether it is rational to 

take for granted that something is rationally taken for granted only if it is true may again not 

be obvious. The quasi-reflexivity of the accessibility relation is also equivalent to the validity 

of the evidence of evidence principle (iii) above on the frame, for any given real number a 

strictly between 0 and 1 (proposition 3.0): if the probability on one’s evidence that X is 

certain on one’s evidence is at least a, then the probability of X on one’s evidence is at least 

a. Again, the exact value of the numerical probability parameter a makes no difference, as 

long as it is not extremal. 

 We can consider negative introspection for evidence from a different angle. Imagine 

various pieces of evidence coming in from various sources. Normally, no one of these 

evidence propositions entails about itself that it exhausts one’s total evidence. Suppose, for 

instance, that your evidence includes both the proposition FLASH that there is a flash and 

the proposition SQUEAK that there is a squeak. FLASH is simply neutral as to whether your 

evidence also includes the proposition SQUEAK that there is a squeak, and vice versa. Now 

suppose that no other evidence comes in. Then the conjunction FLASH & SQUEAK exhausts 

your evidence, but it does not itself entail that it exhausts your total evidence. For all the 

conjunction says, your evidence might also include the proposition HUM that there is a 

hum. Although some special evidence might somehow manage to entail of itself that it 

exhausts your evidence, there is no reason to expect evidence to do that in general. On 

almost any view, one’s total evidence is usually much richer than FLASH & SQUEAK, but that 

does not mean that it entails its own totality. Nor is there any reason to postulate a meta-

device, guaranteed to be in perfect working order, for surveying all one’s evidence, 

including the evidence generated by the meta-device itself. Thus, for the sake of simplicity, 

we can work with the case where your total evidence is just FLASH & SQUEAK, since it is not 

structurally misleading. Although it is consistent with your total evidence that your total 

evidence entails (by including) HUM, your total evidence does not entail HUM, since FLASH 

& SQUEAK may be true while HUM is false. Hence the case is a counterexample to negative 

introspection for evidence. Moreover, as a template for counterexamples it works on a wide 

range of theories of evidence. It does not assume E=K; it does not even assume that all 

evidence is true. Thus, except under extreme idealizations, negative introspection for 

evidence is not a reasonable hypothesis. 
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 That simple case also casts doubt on positive introspection for evidence. On the face 

of it, the flash and the squeak could occur without being part of your evidence, even 

implicitly. Thus FLASH & SQUEAK does not entail that your evidence entails FLASH & 

SQUEAK. So if FLASH & SQUEAK just is your evidence, your evidence may entail FLASH & 

SQUEAK even though your evidence does not entail that your evidence entails FLASH & 

SQUEAK. Someone might try to avoid that result by positing that one’s evidence consists 

wholly of propositions that can only be true by being part of one’s evidence, but that idea 

too threatens to degenerate into radically naive foundationalism. 

 So far, we have mainly assessed evidence of evidence principles that in effect 

transcribe principles from epistemic logic into the probabilistic idiom. Sections 3 and 4 

discuss a wider range of evidence of evidence principles, and discusses whether they imply 

problematic forms of so-called introspection. 

 

 

 

3. Threshold Transfer 

 

The simplest interesting frames for single-agent epistemic logic are partitional: the 

accessibility relation R is an equivalence relation—it is reflexive, symmetric, and transitive—

and so partitions W into mutually exclusive, jointly exhaustive subsets of the form R(w). 

Since any symmetric transitive relation is euclidean, and any reflexive euclidean relation is 

symmetric, R is an equivalence relation if and only if it is reflexive, transitive, and euclidean. 

Thus what the class of such frames validate about knowledge is that it entails truth and 

satisfies positive and negative introspection. We saw in section 2 how problematic positive 

and negative introspection are for both knowledge and evidence. However, simple cases 

make good starting-points, so we begin by reinterpreting partitional frames in terms of 

evidence, so that the evidence forms a partition. 

Suppose that accessibility for evidence is an equivalence relation. Consequently, if 

one’s evidence in a world w is consistent with one’s being in a world x, so Rwx, then one’s 

evidence in w is the same as one’s evidence in x, so any proposition has the same 

probability on the evidence in w as in x. This validates a strong principle about posterior 

probabilities: 

 

Transfera   P>0[P≥a[X]]   P≥a[X] 

 

In other words, if the probability on one’s evidence that the probability on one’s evidence of 

X is at least a is itself nonzero, then the probability on the evidence of X is at least a. 

Transfera holds for every proposition X and real number a in any partitional frame. For if 

P>0[P≥a[X]] is true in x, then P≥a[X] is true at some world y in R(x); if the frame is partitional, 

R(y) = R(x), so Pry(X) = Prx(X), so P≥a[X] is true in x too. In such frames, evidence of evidence is 

always perfect evidence of evidence, so no wonder evidence of evidence is evidence. 

 Many principles reminiscent of Transfera hold only in partitional frames (for example, 

Williamson 2000: 311-15). However, what was needed to validate Transfer was only for R to 

be quasi-partitional, in the sense that whenever yR(x), R(x) = R(y), in other words, if Rxy 
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then for all z, Rxz if and only if Ryz. As is easily seen, a relation is quasi-partitional if and only 

if it is both transitive and euclidean. Transfera does not require reflexivity; it can hold even if 

some evidence is false. An example of a quasi-partitional but not partitional frame is one 

with just two worlds, 0 and 1, where R(0) = R(1) = {1}. It is not partitional because the world 

0 is not in any set of the form R(w). The relation R is non-reflexive, because 0 does not have 

R to itself. R is also non-symmetric, because R01 but not R10. Nevertheless, Transfera holds 

in such a frame. Conversely, for 0 < a < 1, Transfera is valid only on quasi-partitional frames 

(Appendix, proposition 2.0). Thus Transfera is equivalent to quasi-partitionality. Again, the 

numerical value of the parameter a does not matter, as long as it is not extremal. 

Since Transfer requires quasi-partitionality, it implies positive and negative 

introspection. Given their implausibility, we must seek weaker evidence of evidence 

principles, ones that do not make the outer probability operator redundant. Here is a 

natural candidate: 

 

Thresholda Transfer P≥a[P≥a[X]]   P≥a[X]  

 

In other words, whenever the probability on the evidence that the probability on the 

evidence of X is at least a is itself at least a, the probability on the evidence of X is at least a. 

Taking a as the threshold for something to be probable on the evidence (with a > ½), we can 

read Thresholda Transfer as saying that if it is probable on one’s evidence that a hypothesis 

is probable on one’s evidence, then that hypothesis is probable on one’s evidence. 

Transfer entails Thresholda Transfer for all a. For when a = 0, Thresholda Transfer is 

trivial, and when a > 0, P≥a[P≥a[X]]P>0[P≥a[X]]. But not even Thresholda Transfer for all 

values of a together entails Transfer. 

 Here is an example of a frame on which Thresholda Transfer is valid while Transfera is 

not. As before there are just two worlds, 0 and 1, where R01 but not R10, and R11, but this 

time R00 too. Thus R is reflexive as well as transitive, though not symmetric. R is also not 

euclidean (since R01 and R00 but not R10). Transfera fails on this frame for any non-

extremal value of a and any regular probability distribution. For P≥1[{1}] is true at 1 but false 

at 0, even though P>0[P≥1[{1}]] is true at 0. Since R(0) = {0, 1} while R(1) = {1}, the total 

evidence propositions are not even mutually exclusive. Nevertheless, Thresholda Transfer is 

valid on this frame, whatever the probability distribution and the value of a. This follows 

from the general result that for all a between 0 and 1, Thresholda Transfer is valid on every 

frame that is near-partitional in this sense: whenever yR(x), either R(y) = R(x) or R(y) = {y}. 

The new two-world frame is clearly near-partitional. The converse also holds for all a strictly 

between 0 and 1: every frame on which Thresholda Transfer is valid is near-partitional 

(proposition 4.0). This is another instance of the phenomenon already noted in relation to 

Weaka Positive Introspection: the validity on a frame of ‘evidence of evidence’ principles 

with a probabilistic threshold is often insensitive to the value of that parameter. In this case, 

whenever a and b are both strictly between 0 and 1, Thresholda Transfer and Thresholdb 

Transfer are valid on exactly the same frames. 

 For R(y) to be {y} is for one’s evidence in y to entail all and only truths in the world y: 

one’s evidence tells the whole truth and nothing but the truth about y. That is a wildly 
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idealized scenario. Thus, in practice, near-partitionality is very close to partitionality, and 

Thresholda Transfer very close to Transfer, too close for it to be a useful weakening. 

 Another way to assess the strength of Thresholda Transfer is by noting that the 

propositional modal logic of near-partitional (and serial) frames can be axiomatized by this 

set of axioms: 

 

D  □p   ◊p 

 

Q-T  □(□p   p) 

 

4  □p   □□p 

 

Q-5  ◊p   □(◊p   (q   □q)) 

 

More precisely, the smallest normal modal logic with D, Q-T, 4, and Q-5 as theorems is 

sound and complete for the class of near-partitional serial frames. D corresponds to 

seriality, Q-T to quasi-reflexivity, 4 to transitivity, and Q-5 to a slight weakening of the 

euclidean property. The two disjuncts in the consequent of Q-5 correspond to the two 

disjuncts in the definition of near-partitionality (in the same order). On the relevant 

interpretation of the modal operators in terms of evidence, D says that one’s evidence is 

compatible with what it entails, Q-T that one’s evidence entails that one’s evidence is true, 

and 4 that one’s evidence obeys positive introspection. Q-5 weakens negative introspection 

(corresponding to the 5 principle ◊p   □◊p, equivalent to the contraposed principle ◊□p 

□p) by saying that if one’s evidence is consistent with a proposition, then one’s evidence 

entails that either one’s evidence is consistent with the proposition or any given truth is 

entailed by one’s evidence. 

 Positive introspection for evidence was already discussed in section 2. As for axiom 

Q-5, it is no more plausible than negative introspection, even though logically it is slightly 

weaker. Under E=K, Q-5 implies claims like this about the bad case (at least if one knows 

E=K): if for all one knows there is no apple on the table, then one knows that either for all 

one knows there is no apple on the table or if there is life on other planets then one knows 

that there is life on other planets. But the antecedent is true in the bad case: since there is 

no apple on the table, for all one knows there is no apple on the table. Thus Q-5, read 

epistemically, generates the claim that, in the bad case, one knows that either for all one 

knows there is no apple on the table or if there is life on other planets then one knows that 

there is life on other planets. But since there is no useful connection between the disjuncts, 

one’s only way of knowing the disjunction is by knowing one of the disjuncts (sometimes 

one knows a disjunction without knowing any disjunct, for instance when the disjunction is 

an instance of the law of excluded middle or the content of some disjunctive testimony, but 

in such cases there is a useful epistemic connection between the disjuncts). Hence either 

one knows that for all one knows there is no apple on the table, or one knows that if there is 

life on other planets then one knows that there is life on other planets. But one does not 

know that for all one knows there is no apple on the table, because for all one knows one 

knows that there is an apple on the table. One also does not know that if there is life on 
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other planets then one knows that there is life on other planets, for one has no special 

access to whether there is life on other planets. 

 Even if we bracket E=K, and do not assume that all evidence is true, the case in 

section 2 where one’s total evidence is just the conjunction FLASH & SQUEAK raises as 

severe a problem for Q-5, read in terms of evidence, as it does for negative introspection. 

Thus weakening negative introspection by the second disjunct in the consequent makes no 

significant difference to the plausibility of Q-5. 

 In brief, Thresholda Transfer principles weaken negative introspection too slightly to 

regain plausibility.  

 We can also consider principles intermediate between Thresholda Transfer and 

Weaka Positive Introspection, in other words, principles of the form P≥a[P≥a[X]]   P≥b[X] for 

a > b > 0. For example, we might set b = a2. Such principles are only valid on transitive 

frames, since they all entail Positive Introspection; the question is where the corresponding 

frame conditions come between transitivity and near-partitionality. In general, such 

intermediate principles require far more than transitivity. For instance, consider frames 

where W = {x} Y Z; {x}, Y, and Z are pairwise disjoint; R(x) = W, R(y) = {y} Z for yY, and 

R(z) = Z for zZ. Such frames are reflexive and transitive but neither symmetric nor 

euclidean. Let |Y| = n2, |Z| = n, and Pr be the uniform probability distribution on W. Then 

Pry(Z) = n/(n + 1) for yY, and Prz(Z) = 1 for zZ. Thus Y Z   P≥a[Z] for sufficiently large n, 

in which case Prx(P≥a[Z]) ≥ (n2 + n)/(n2 + n + 1), so xP≥a[P≥a[Z]] for sufficiently large n. But 

Prx(Z) = n/(n2 + n + 1), so xP≥b[Z] for sufficiently large n. Thus, for any given a > b > 0, for 

sufficiently large n the frame invalidates the principle P≥a[P≥a[X]]   P≥b[X]. For those who 

accept Positive Introspection but reject Negative Introspection for evidence, it is unclear 

what principled objection there might be to modelling evidence on such frames.4  

 An important frame condition for such principles is what we may call quasi-

nestedness: <W, R> is quasi-nested if and only if whenever Rwx, Rwy, Rxz, and Ryz, then 

either Rxy or Ryx. Very roughly, if two points visible from a given point are invisible from 

each other, then their fields of vision are disjoint. Quasi-nestedness has a long history in 

epistemic logic, under varying terminology (Geanakoplos 1989, Dorst 2016). One can show 

that for all a, b[0, 1], the natural-looking principle Pr≥a[Pr≥b[X]]Pr≥ab[X]] is valid on every 

finite serial transitive quasi-nested frame; conversely, any finite serial frame on which the 

principle is valid for all a, b[0, 1] is transitive and quasi-nested (proposition 15.5). The 

difference in validity conditions between this principle and Thresholda Transfer is one way in 

which the numerical values of the thresholds do make a difference. 

 How plausible is quasi-nesting as an epistemic condition? It does not correspond to 

the validity of a formula in the language of propositional modal logic, for the modal system 

S4 is sound and complete both for the class of all reflexive transitive frames, many of which 

are not quasi-nested, and for the class of reflexive transitive tree frames, all of which are 

quasi-nested (see Blackburn, de Rijke, and Venema 2001: 353). Thus no formula of the 

language is valid in all and only quasi-nested frames. The distinctive consequences of quasi-

nesting appear only in a more expressive language, such as one with probability operators. 

We shall see later in section 4 that many epistemically reasonable frames are not quasi-

nested. 
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4. Comparative transfer 

 

Probabilistic confirmation can be understood in two ways, absolute and comparative. In the 

absolute sense, evidence confirms a hypothesis if the probability of the hypothesis on the 

evidence reaches some fixed threshold (such as 80%). In the comparative sense, evidence 

confirms a hypothesis if the probability of the hypothesis on the evidence exceeds its prior 

probability. The absolute sense concerns high probability, the comparative sense higher 

probability, or probability raising. Various hybrids of the two standards are also conceivable, 

but it is better to start with the simple contrast. Clearly, evidence of evidence principles can 

also be read in either the threshold way or the comparative way. Again, various hybrid 

readings are also conceivable, and again it is better to start with the simpler ones. In the 

previous section, threshold readings of ‘evidence of evidence’ principles turned out to be 

unpromising. This section considers the comparative reading. 

 Probability-raising is easy to formalize in the present framework, since it provides 

both the prior probability distribution Pr and, for each world w, the posterior probability 

distribution Prw which conditionalizes Pr on one’s (new) evidence in w, R(w). For present 

purposes, it does not matter whether Pr embodies earlier background evidence or not. Thus 

the proposition that the (new) evidence has raised the probability of a proposition X is 

simply {w: Prw(X) > Pr(X)}, which we notate as P>[X]. It is just the set of worlds in which the 

posterior probability of X is greater than its prior probability. When the ‘evidence of 

evidence’ slogan is so understood in terms of probability-raising, it becomes this: 

 

Comparative Transfer   P>[P>[X]]   P>[X] 

 

In other words, if the evidence raises the probability that the evidence raises the probability 

of X, then the evidence does raise the probability of X. What are the prospects for 

Comparative Transfer? In which frames is it valid? 

 An initial observation is encouraging: Comparative Transfer is valid on some frames 

on which Negative and Positive Introspection both fail. In that way it is less demanding than 

the Threshold Transfer principles. In fact, the validity of the Threshold Transfer principles on 

a frame is neither necessary nor sufficient for the validity of Comparative Transfer 

(proposition 14.0). On closer inspection, the picture is more complicated and less rosy.  

 We can start with the case of Positive Introspection, or in modal terms the 4 axiom. 

Although its validity does not follow from that of Comparative Transfer, the validity of this 

weakening of it does (corollary 8.1): 

 

(iv)  □□p   □□□p 

 

In other words, although the evidence may entail a proposition without entailing that it 

entails it, if the evidence entails that it entails a proposition, then it entails that it entails 
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that it entails that proposition. In terms of the accessibility relation between worlds, the 4 

axiom corresponds to transitivity, in other words, if you can get from x to z in two steps of 

accessibility, you can get there in one step. For comparison, (iv) corresponds to the feature 

that if you can get from x to z in three steps of accessibility, you can get there in two. It is 

hard to see what independent theoretical reason there might be for accepting the weaker 

principle that would not also be a reason for accepting the stronger. Relevant objections to 

Positive Introspection for knowledge generalize to objections to the weaker principle 

(Williamson 2000: 120-1).5 If the proposition that one’s evidence entails SQUEAK is added to 

one’s evidence, it does not follow that the proposition that it has been added to one’s 

evidence has itself been added to one’s evidence. 

 As with previous ‘evidence of evidence’ principles, the problems for Comparative 

Transfer do not end with (slight weakenings of) the contested principle of Positive 

Introspection. They extend to (slight weakenings of) the far more generally rejected 

principle of Negative Introspection. For example, on any frame on which Comparative 

Transfer is valid, so is (v): 

 

(v)  (□p   p)   (◊q    □◊q) 

 

Since p and q are independent variables, (v) says in effect that each world is either reflexive 

or euclidean: if the former, all instances of the T axiom hold at it, if the latter, all instances of 

the 5 axiom do. For those (like the author) who hold that all evidence is true, (v) is 

unproblematic, because it is true thanks to the first disjunct. But for those who hold that 

evidence may be false, (v) has the effect that Negative Introspection must hold of all 

propositions whatever whenever one has some false evidence. Epistemologically, it is quite 

unclear why the T and 5 axioms should play such complementary roles. To turn the screw, 

(v) requires that if one has false evidence about one topic, then one’s evidence about some 

completely different topic conforms perfectly to Negative Introspection. But if the T axiom 

for evidence has false instances in some situations, and Negative Introspection has false 

instances, it is almost inevitable that in some combined situations both principles will have 

false instances, perhaps about unrelated topics, which is enough to violate (v). For example, 

if one’s evidence is consistent with the proposition that one’s evidence entails HUM, even 

though one’s evidence does not in fact entail HUM, why should that prevent one from 

getting false evidence about something else, if false evidence is in general an option? 

 However, even for those who accept the T axiom, Comparative Transfer has 

problematic consequences. They include weakenings of the B axiom p → □◊p, which 

corresponds to the symmetry of the accessibility relation. B is implausible in epistemic logic, 

for reasons closely connected to the implausibility of Negative Introspection. Read in terms 

of knowledge, B says that if something obtains, one knows that for all one knows it obtains. 

But consider any pair of a good case, in which all goes well, things are as they seem and one 

has plenty of knowledge, and a bad case, a sceptical scenario in which one seems to oneself 

to be in the good case but things are not as they seem, much of what one seems to oneself 

to know is false, and one knows very little. In the good case, one knows things incompatible 

with being in the bad case. In the bad case, for all one knows one is in the good case, so for 

all one knows one knows things incompatible with being in the bad case. Thus, if one is in 
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the bad case, one does not know that for all one knows one is in the bad case. Hence the B 

axiom fails for knowledge. Consequently, on the equation E=K, the B axiom also fails for 

evidence.  

Even if evidence is not equated with knowledge, the B axiom faces similar 

counterexamples to those for knowledge. There are two cases to consider: either false 

evidence is disallowed (R must be reflexive), or false evidence is allowed (R can be non-

reflexive). 

First, suppose that false evidence is disallowed. Start with a good case where E is 

true and part of one’s evidence. Typically, there will be a bad case where one’s evidence is 

consistent with being in the good case, but E is false and so not part of one’s evidence. The 

bad case may be one which seems from the inside just as the good case does, or it may 

simply be that in both cases one’s capacity to survey one’s evidence as a whole is imperfect, 

and in the bad case one cannot ascertain that one’s evidence lacks E and add that fact to 

one’s evidence. Either way, in the bad case, ¬E is true, but one’s evidence does not entail 

that one’s evidence is consistent with ¬E, for one’s evidence in the bad case is consistent 

with being in the good case, where one’s evidence is inconsistent with ¬E. Thus, on its 

evidential reading, the B axiom fails in the bad case. 

Now suppose instead that false evidence is allowed. Typically, the motivation for 

allowing it is to let one’s evidence in both good and bad cases be the content of 

appearances common to those cases. Thus one’s evidence is the same in the two cases, but 

true in the good case and false in the bad case. Since one’s evidence is false in the bad case, 

one’s evidence in both cases entails that one is not in the bad case. Therefore, since one’s 

evidence is true in the good case, and entails that one is not in the bad case, one’s evidence 

in both cases does not entail that one’s evidence is consistent with one’s being in the bad 

case. Thus, on its evidential reading, the B axiom fails again in the bad case. 

In brief, whether false evidence is allowed or not, the B axiom fails on reasonable 

views of evidence. 

As already noted, the validity of Comparative Transfer does not require the validity 

of the B axiom for evidence. Comparative Transfer is valid on some reflexive but non-

symmetric frames, such as the two-world frame <W, R> where W = {good, bad}, R(good) = 

{good} and R(bad) = {good, bad} (by proposition 9.0). Since that is exactly the problematic 

structure under discussion, Comparative Transfer may look to be out of the wood. But it is 

not. For although its validity on a frame does not require the accessibility relation to be 

symmetric everywhere, it does limit how widespread the failures can be. More specifically, if 

Comparative Transfer is valid on a finite serial frame <W, R>, then for all worlds w, x, y, z in 

W, if Rwx, Rxy, and Ryz, then either Rxw, or Ryx, or Rzy. In other words, if there is a chain of 

three successive links of accessibility, at least one of those links is bidirectional, an instance 

of symmetry. In the language of modal logic, that frame condition corresponds to this axiom 

(proposition 7.9): 

 

(vi)  p   □(q   (◊p   □(r   (◊q   □◊r))) 

 

The three variables p, q, and r are mutually independent. 
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To see why (vi) is problematic, note that the contrast between good and bad cases is 

not all-or-nothing. A case may be good in one respect, bad in another. For example, one 

may suffer a minor illusion about the size, shape, or distance of a particular building, or the 

direction from which a particular sound is coming, while continuing to gain large amounts of 

perceptual evidence about one’s environment in many other respects. Indeed, such mixed 

cases may be usual in everyday life. For simplicity, consider worlds which differ from each 

other only in goodness or badness in three independent minor respects, 1, 2, and 3. Let 

each subset of {1, 2, 3} label the world (or scenario) which is good in the respects it contains 

and bad in the other respects. Thus world {} is bad in all three respects, while world {1, 2, 3} 

is good in all three respects. In line with the previous discussion, we naturally identify 

accessibility with the subset relation, for S   S* (  W) just in case there is no respect in 

which S is good and S* is not (which is what would block accessibility). This accessibility 

relation is reflexive and transitive, but not symmetric.6 For instance, {1} has R to {1, 2} but 

not vice versa, because {1} stands to {1, 2} as the bad case to the good case in respect 2, 

while they do not differ in respects 1 and 3. Thus {} has R to {1}, {1} has R to {1, 2}, and {1, 2} 

has R to {1, 2, 3}, and none of these R links is reversible: {1} lacks R to {}, {1, 2} lacks R to {1}, 

and {1, 2, 3} lacks R to {1, 2}. Thus the frame condition corresponding to (vii) is violated, so 

Comparative Transfer is violated. In terms of (vi) itself, there is a counterexample where p is 

the proposition that one is in a bad case in respect 1, q is the proposition that one is in the 

bad case in respect 2, and r is the proposition that one is in the bad case in respect 3. 

For reflexive frames, where evidence is always true, the counterexamples can be 

slightly simplified, for we only require a chain of two steps of R for one of the steps to be 

bidirectional. More specifically, if Comparative Transfer is valid on a finite reflexive frame 

<W, R>, then for all worlds w, x, y in W, if Rwx and Rxy, then either Rxw or Ryx (proposition 

7.10) In the language of modal logic, that frame condition corresponds to this axiom 

(proposition 7.11): 

  

 (vii)  p   □(q   (◊p   □◊q)) 

 

In this case, counterexamples can make do with two respects rather than three. Since the 

frame just described is already reflexive, there is no need to elaborate. 

 In brief, although Comparative Transfer is on balance weaker than the Thresholda 

Transfer principles, its epistemological consequences are still implausibly strong. 

 We briefly return to the family of multiplication principles Pr≥a[Pr≥b[X]]Pr≥ab[X]] 

considered in section 3. A finite serial frame validates all those principles if and only if it is 

transitive and quasi-nested. But no frame of the kind just considered with sceptical 

scenarios in more than one respect is quasi-nested, for {} has the accessibility relation R to 

both {1} and {2}, and they both have R to {1, 2}, but neither of {1} and {2} has R to the other. 

Although quasi-nesting holds in the two-world non-symmetric frame corresponding to a 

sceptical scenario in only one respect (since that frame is connected), it is hard to think of 

any principled reason for permitting the one-respect set-up but rejecting all the multiple-

respects set-ups. Thus a principled defence of quasi-nesting will be forced to reject the 

natural modelling of sceptical scenarios. On its epistemic reading, the multiplication 
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principle Pr≥a[Pr≥b[X]]Pr≥ab[X]] is correspondingly unreasonable, for at least some values of 

a and b (it is trivial when a = 0 or b = 0).  

 Back to Comparative Transfer. From a technical point of view, it behaves rather 

differently from the other principles considered in this chapter. Unlike them, it essentially 

involves the prior probability distribution Pr, in ways that cannot be reduced to the 

posterior distributions Prw. Whether it holds at a given world depends on global features of 

the frame, and can depend on what happens at worlds to which the starting world does not 

even bear the ancestral of the accessibility relation, for those worlds contribute to the priors 

with which the posteriors are being compared. One manifestation of this global aspect is 

that in some cases Comparative Validity is valid on each of two mutually disjoint frames but 

invalid on their union, even when the two original frames are isomorphic to each other 

(proposition 13.0). That cannot happen in the standard model theory of ordinary modal 

logic or the other principles considered in this paper, because at every stage the 

generalizations over worlds are restricted by the accessibility relation, and so never cross 

the boundary between one of the original frames and the other. As a corollary, by contrast 

with the Thresholda Transfer principles, there is no set of formulas in the standard language 

of propositional modal logic whose validity on a frame is equivalent to the validity of 

Comparative Transfer, for the class of frames on which such formulas are valid is closed 

under disjoint unions.  

In part for the reason just discussed, the model theory is more intricate for 

Comparative Transfer than for the principles discussed earlier.  The partial results in the 

appendix give some indication of its complexity. They do not include a necessary and 

sufficient condition, in non-probabilistic terms, for Comparative Transfer to be valid on a 

frame <W, R>. That is left as an open problem for the interested reader. The epistemological 

implausibility of Comparative Transfer makes it non-urgent for present purposes. 

 

 

 

5. Conclusion 

 

This paper has considered by no means all imaginable renderings of the slogan ‘evidence of 

evidence is evidence’ in the framework of single-agent synchronic epistemic logic with 

probabilities. However, it has assessed the most natural candidates, with bleak results: they 

all have epistemologically implausible consequences, which fail even in the mildest sceptical 

scenarios. 

To overturn this provisional negative verdict, it will not be enough to formulate 

another candidate rendering that has not been considered here. Such moves come far too 

cheap. Rather, what would be needed are serious results to the effect that the candidate 

principle is valid in a good variety of frames invalidating the implausible introspection 

principles.  

If that challenge is unmet, we may tentatively conclude that, in any reasonable 

sense, evidence of evidence is not always evidence—not always in the single-agent 

synchronic case, and a fortiori not always in the multi-agent and diachronic cases either.  



19 
 

Of course, none of this means that evidence of evidence is not typically evidence. It 

would also be useful to have positive results giving less demanding sufficient conditions in 

the present framework for most evidence of evidence to be evidence, in senses close to 

those in this paper.7 
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Appendix 

 

 

For convenience, definitions in the main text are repeated here as they arise. 

 

Weaka Positive Introspection   P≥a[P≥a[X]]   P>0[X] 

 

Proposition 1.0: For a (0, 1), Weaka Positive Introspection is valid on a finite serial frame iff 

it is transitive. 

Proof: Suppose that P≥a[P≥a[X]]   P>0[X] is valid on a finite serial frame <W, R>. Suppose 

further that Rxy, Ryz, but not Rxz. Thus y ≠ z. If W = {y, z}, define a probability distribution Pr 

over W thus: 

Pr({y}) = 1 – a 

 Pr({z}) = a 

If W ≠ {y, z}, so |W| = n > 2, instead define Pr thus: 

 Pr({y}) = a(1 – a) 

 Pr({z}) = a 

 Pr({u}) = (1 – a)2/(n – 2)  for u{y, z} 

The following argument works on both definitions. 

Since zR(y), Pry({z}) = Pr({z} R(y))/Pr(R(y)) = Pr({z})/Pr(R(y)) ≥ Pr({z}) = a, so yP≥a[{z}]. 

Moreover, since yR(x) and zR(x): 

Prx({y}) = Pr({y})/Pr(R(x)) ≥ Pr({y})/Pr(W – {z}) = Pr({y})/(1 – a) ≥ a(1 – a)/(1 – a) = a 

Hence xP≥a[{y}], so Prx({y}) ≥ a. But {y}P≥a[{z}] so Prx(P≥a[{z}] ≥ a, so xP≥a[P≥a[{z}]]. Thus, 

by hypothesis, xP>0[{z}], so Px({z}) > 0; but R is regular, so zR(x), contrary to hypothesis. 

Thus R is transitive after all. 

Conversely, suppose that R is transitive and Pr is a regular probability distribution 

over W. Suppose that xP≥a[P≥a[X]]. Thus Prx(P≥a[X]) ≥ a > 0, so there is a yP≥a[X] R(x). 

Thus Pry(X) ≥ a > 0, so there is a zX R(y). But then zR(x) because yR(x), zR(y), and R 

is transitive. Hence zX R(x), so Prx(X) > 0 because Pr is regular, so xP>0[X]. This shows 

that P≥a[P≥a[X]]   P>0[X] , as required. 

 

Corollary 1.1: For any a, b(0, 1) and finite serial frame <W, R>, Weaka Positive 

Introspection is valid on <W, R> iff Weakb Positive Introspection is. 

 

Transfera   P>0[P≥a[X]]   P≥a[X]  (for a [0, 1]) 

 

A frame <W, R> is quasi-partitional: for all xW, if yR(x) then R(x) = R(y) (equivalently, R is 

transitive and euclidean). 

 

Proposition 2.0: For a (0, 1), Transfera is valid on a finite serial frame iff it is quasi-

partitional. 
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Proof: Suppose that Transfera is valid on a finite serial frame <W, R>. If |W| = 1 the result is 

trivial, so we may assume that |W| = n ≥ 2. Let x, zW, and yR(x). Choose b so that 

max{a, 1 – a} < b < 1. Define a probability distribution Pr over W by setting: 

 Pr({z}) = b 

 Pr({u}) = (1 – b)/(n – 1) for u ≠ z 

If zR(y), Pry({z}) = Pr({z})/Pr(R(y) ≥ Pr({z}) = b > a, so yP≥a[{z}]. Since yR(x):  

xP>0[P≥a[{z}]], so by Transfera, yP≥a[{z}], so zR(x). On the other hand, if zR(y), then 

Pry(W−{z}) = 1, so yP≥a[W−{z}]. Since yR(x), xP>0[P≥a[W−{z}]], so xP≥a[W−{z}] by 

Transfera, so 1 – Prx({z}) = Prx(W–{z}) ≥ a. Hence Prx({z}) ≤ 1 – a. But, as before, if zR(x) then 

Prx({z}) ≥ b > 1 – a. Thus zR(x). So for all zW, zR(y) iff zR(x). Thus R(y) = R(x). Hence R 

is quasi-partitional. The converse is routine. 

 

Corollary 2.1: For any a, b(0, 1), Transfera is valid on a finite serial frame iff Transferb is.  

 

Proposition 3.0: For a (0, 1), the principle P≥a[P≥1[X]]   P≥a[X] is valid on a finite serial 

frame iff it is quasi-reflexive. 

Proof: Suppose that P≥a[P≥1[X]]   P≥a[X] is valid on a finite serial frame <W, R>. If |W| = 1 

the result is trivial, so we may assume that |W| = n ≥ 2. Let x, zW. Define a probability 

distribution Pr over W just as in the proof of 2.0. Suppose that zR(z). Thus:  

R(z)W−{z}, so {z}P≥1[W−{z}], so Prx(P≥1[W−{z}]) ≥ Prx({z}) = Pr({z})/Pr(R(x)) ≥ Pr({z}) = b > a. 

Hence xP≥a[P≥1[W−{z}]]. By hypothesis, P≥a[P≥1[W−{z}]]P≥a[W−{z}]. Thus xP≥a[W−{z}]. By 

an argument as in the proof of 2.0, we can show that zR(x). By contraposition, if zR(x) 

then so zR(z). Thus R is quasi-reflexive.  

Conversely, suppose that R is quasi-reflexive and Pr is a regular probability 

distribution over W. Suppose that zP≥a[P≥1[X]]. So Prz(P≥1[X]) ≥ a. Let uP≥1[X] R(z). Since 

uR(z), by quasi-reflexivity uR(u). Hence if uX, Pru(X) < 1 because Pr is regular. So, since 

uP≥1[X], uX. Thus P≥1[X]]  R(z)X, so a ≤ Prz(P≥1[X]) ≤ Prz(X), so zP≥a[X]. Thus 

P≥a[P≥1[X]]   P≥a[X], as required. 

 

Corollary 3.1: For any a, b(0, 1), one of these principles is valid on a finite serial frame iff 

the other is: P≥a[P≥1[X]]   P≥a[X] and P≥b[P≥1[X]]   P≥b[X]. 

 

Thresholda Transfer P≥a[P≥a[X]]   P≥a[X]  (for a [0, 1]) 

 

A frame <W, R> is near-partitional: for all xW, if yR(x) then either R(y) = R(x) or R(y) = {y}. 

 

Proposition 4.0: For a (0, 1), Thresholda Transfer is valid on a finite serial frame iff it is near-

partitional. 

Proof: Suppose that Thresholda Transfer is valid on a finite serial frame <W, R>, but <W, R> 

is not near-partitional. Thus for some w and xR(w), R(x) ≠ R(w) and R(x) ≠ {x}. Since 

Thresholda Transfer is valid on <W, R>, so is the principle P≥a[P≥1[X]]   P≥a[X], for:  

P≥1[X]]   P≥a[X], so P≥a[P≥1[X]]   P≥a[P≥a[X]]   P≥a[X]. 
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Thus, by 3.0, R is quasi-reflexive, so {x}R(x), for xR(w).  Since R(x) ≠ {x}, there is a yR(x) 

with y ≠ x. Furthermore, by Thresholda Transfer, the principle P≥a[P≥a[X]]   P>0[X] is also 

valid on <W, R>, because P≥a[X]   P>0[X]. Thus, by 1.0, R is transitive, so R(x)R(w); since 

R(x) ≠ R(w), there is a zR(w)−R(x), so z ≠ y. Moreover, since xR(x), z ≠ x. Thus x, y, and z 

are mutually distinct. There are two cases: 

Case (i): W = {x, y, z}. Define a probability distribution Pr over W thus: 

 Pr({x}) = a(1 – a) 

 Pr({y}) = a2 

 Pr({z}) = 1 – a 

Since R(x)W−{z}, Pr(R(x)) ≤ Pr(W−{z}) = 1 – Pr({z}) = a. Thus, since yR(x): 

Prx({y}) = Pr({y})/Pr(R(x)) ≥ a2/a = a 

Since yR(x), R(y)R(x) because R is transitive, so Pr(R(y)) ≤ Pr(R(x)) ≤ a. Also yR(y), 

because R is quasi-reflexive. Thus:  

Pry({y}) = Pr({y})/Pr(R(y)) ≥ Pr({y})/Pr(R(x)) ≥ a 

Thus {x, y}P≥a[{y}]. Moreover, {x, y}R(w) because R is transitive. Since zR(w), R(w) = W. 

Hence Prw(P≥a[{y}]) ≥ Prw({x, y}) = Pr({x, y})/Pr(R(w)) = Pr({x, y}) = a(1 – a) + a2 = a.  

So wP≥a[P≥a[{y}]]. Hence wP≥a[{y}] because Thresholda Transfer is valid on <W, R> by 

hypothesis. But R(w) = W, so Prw({y}) = Pr({y}) = a2 < a because a < 1. Hence wP≥a[{y}], 

which is a contradiction. Thus <W, R> is near-partitional after all. 

Case (ii): |W| = n > 3. Define a probability distribution Pr over W thus: 

 Pr({x}) = a(1 – a)/(1 + a)  

 Pr({y}) = 2a2/(1 + a) 

 Pr({z}) = (1 – a)/(1 + a) 

 Pr({u}) = a(1 – a)/(n – 3)(1 + a)  for uW–{x, y, z} 

The argument resembles that of case (i); some overlapping parts are omitted. 

Pr(R(x)) ≤ 1 – Pr({z}) = 2a/(1 + a). Thus: 

Prx({y}) = Pr({y})/Pr(R(x)) ≥ (2a2/(1 + a))/(2a/(1 + a) = a.  

Similarly, Pry({y}) ≥ Pr({y})/Pr(R(x)) ≥ a. Thus {x, y}   P≥a[{y}]. But:  

Prw(P≥a[{y}]) ≥ Prw({x, y}) = Pr({x, y})/Pr(R(w)) ≥ Pr({x, y}) = (a(1 – a) + 2a2)/(1 + a) = a 

So wP≥a[P≥a[{y}]]. Hence wP≥a[{y}] by Thresholda Transfer. But {x, y, z}   R(w). Thus: 

Prw{x, y, z} ≤ Prw(R(w)), so:  

Prw({y}) = Pr({y})/Pr(R(w)) ≤ Pr(({y})/Pr({x, y, z}) = 2a2/(a(1 – a) + 2a2 + 1 – a) = 2a2/(1 + a2). 

But (1 – a)2 > 0, so 1 > 2a/(1 + a2), so a > 2a2/(1 + a2), so Prw({y}) < a. Hence wP≥a[{y}], again 

a contradiction. Thus <W, R> is near-partitional after all. 

Conversely, suppose that <W, R> is semi-partitional. Let wW and XW. Suppose that 

Prw(X) < a. We first note (1): 

(1)      {x: Prx(X) ≥ a} R(w)   X R(w) 

For if Prx(X) ≥ a > Prw(X) then R(x) ≠ R(w), so by near-partitionality R(x) = {x}; since Prx(X) > 0, 

some member of R(x) belongs to X, so xX. But (1) entails (2): 

(2)        Prw({x: Prx(X) ≥ a}) ≤ Prw(X) < a 

By contraposition, if Prw({x: Prx(X) ≥ a}) ≥ a then Prw(X) ≥ a. In other words, 

P≥a[P≥a[X]]   P≥a[X], so Thresholda Transfer at a is valid on <W, R>, as required. 
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Corollary 4.1: For a, b(0, 1), Thresholda Transfer is valid on a finite serial frame iff 

Thresholdb Transfer is. 

 

Lemma 5.0: Let <W, R> be a finite serial frame <W, R>, wW, and XW. Then Pr(X) < Prw(X) 

for some regular probability distribution Pr on <W, R> iff R(w) X ≠ {} and R(w) X ≠ W. 

Proof: Suppose that R(w) X ≠ {} and R(w) X ≠ W. Let xR(w) X and yW−(R(w) X)), 

so x ≠ y. Thus |W| = n ≥ 2. Define a probability distribution Pr over W thus: 

If n = 2 Pr({x}) = ½ and Pr({y}) = ½.  

If n > 2, Pr({x}) = 1/3, Pr({y}) = ½, and PR({z}) = 1/6(n – 2) for zW–{x, y}.  

Either way, since XW−{y}, Pr(X) ≤ Pr(W−{y}) = ½. Since R(w)W−{y}, Pr(R(w)) ≤ Pr(W−{y}) 

= ½. But Prw(X) = Pr(X R(w))/Pr(R(w)) ≥ Pr({x})/Pr(R(w)) ≥ (1/3)/(1/2) = 2/3 > ½ ≥ Pr(X). 

For the converse, let Pr be any regular probability distribution on <W, R>. 

First, suppose that R(w) X = {}. Then Prw(X) = 0 so Pr(X) ≥ Prw(X). 

Second, suppose that R(w) X = W. Then W−R(w)X so Pr(W−X | W−R(w)) = 0. Hence, by 

total probability: 

Pr(W−X) = Pr(W−X | R(w))Pr(R(w)) + Pr(W−X | W−R(w))Pr(W−R(w)) = Pr(W−X | R(w))Pr(R(w)) 

≤ Pr(W−X | R(w)) = Prw(W−X) so Pr(X) = 1 – Pr(W−X) ≥ 1 – Prw(W−X) = Prw(X), as required. 

 

Notation: R−1(x) = {w: Rwx} and NR = {w: R(w) ≠ W}. 

 

Comparative Transfer:  P>[P>[X]]   P>[X] 

 

Proposition 6.0: Let <W, R> be a finite serial frame <W, R> and xW. Then: 

P>[P>[{x}]]   P>[{x}] for every regular probability distribution Pr on <W, R> iff:  

for all w, xW: if R(w) (R−1(x) NR) ≠ {} and R(w) (R−1(x) NR) ≠ W then xR(w). 

Proof: First note that for any regular probability distribution Pr and xW:  

P>[{x}] = R−1(x) NR 

For if xR(w) and R(w) ≠ W then wP>[{x}] because Pr(R(w)) < 1 so Pr({x}) < Pr({x})/Pr(R(w)) 

= Prw({x}). If R(w) = W then wP>[{x}] because Pr({x}) = Prw({x}). If xR(w) then wP>[{x}] 

because Prw({x}) = 0 and Pr({x}) > 0. Thus it suffices to prove: 

P>[P>[{x}]]P>[{x}] for every regular probability distribution Pr on <W, R> iff:  

for all wW if R(w) P>[{x}] ≠ {} and R(w) P>[{x}] ≠ W then xR(w). 

Suppose that P>[P>[{x}]]   P>[{x}] for every regular probability distribution Pr on <W, R>, 

and that R(w) P>[{x}] ≠ {} and R(w) P>[{x}] ≠ W. By lemma 5, Pr(P>[{x}]) < Prw(P>[{x}]) for 

some regular probability distribution Pr on <W, R>, so wP>[P>[{x}]], so wP>[{x}] by 

hypothesis, so wR−1(x) NR, so xR(w).  

Conversely, suppose: whenever R(w) P>[{x}] ≠ {} and R(w) P>[{x}] ≠ W, xR(w). 

Let Pr be a regular probability distribution on <W, R>. Suppose that wP>[P>[{x}]]. Thus 

Pr(P>[{x}]) < Prw(P>[{x}]). Then, by 5.0, R(w) P>[{x}] ≠ {} and R(w) P>[{x}] ≠ W, so by 

hypothesis xR(w). Therefore wR−1(x), and R(w) ≠ W, so wNR, so wP>[{x}]. Thus 

P>[P>[{x}]]   P>[{x}], as required.  
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Corollary 6.1: If Comparative Transfer is valid on a finite serial frame <W, R>, then for all v, 

w, x, y, z, if Rwy, Ryx, not Ryv, not Rwz, and either not Rzx or for all u Rzu, then Rwx. 

 

Corollary 6.2: If Comparative Transfer is valid on a finite serial frame <W, R>, then for all x, y, 

z, v, if neither Rxx nor Ryv, then if Rxy and Ryz then Rxz.  

Proof: Substitute x for w and z, and z for x in 6.1. 

 

Proposition 7.0: Let <W, R> be a finite serial frame <W, R> and xW. Then: 

P>[P>[W−{x}]]   P>[W−{x}] for every regular probability distribution Pr on <W, R> iff: 

for all w, xW, if xR(w) then either R(w)R−1(x) or R−1(x)R(w). 

Proof: Note that P>[W−{x}] = W−R−1(x). For if wR−1(x) and R(w) ≠ W then wP>[W−{x}] 

because Pr({x}) < Prw({x}) (as in 6.0) so Pr(W−{x}) > Prw(W−{x}). If R(w) = W then, again as in 

6.0, wP>[{x}]. If wR−1(x) then wP>[W−{x}] because Prw(W−{x}) = 1 and Pr(W−{x}) < 1. 

Thus it suffices to prove: 

P>[P>[W−{x}]]P>[W−{x}] for every regular probability distribution Pr on <W, R> iff: 

for all wW if R(w) P>[{x}] ≠ {} and R(w) P>[{x}] ≠ W then wW−R−1(x). 

The rest of the proof is similar to that of 6.0  

 

Corollary 7.1: If Comparative Transfer is valid on a finite serial frame <W, R>, then for all w, 

x, if Rwx then either for all z if Rwz then Rzx or for all z if Rzx then Rwz. 

 

Corollary 7.2: If Comparative Transfer is valid on a finite serial frame <W, R>, then whenever 

Rwx, either Rww or Rxx. 

Proof: By 7.1, substituting x for z in the first disjunct and w for z in the second. 

 

Corollary 7.3: On any finite serial frame on which Comparative Transfer is valid, so is 
(□p   p)   □(□q   q). 

Proof: Suppose that □p   p is false at wW in a model based on such a frame <W, R>. Thus 

not Rww. Hence, by 7.2, Rxx for all x such that Rwx, so □(□q   q) is true at w in the model. 

 

Corollary 7.4: On any finite serial frame <W, R> on which Comparative Transfer is valid, for 

all w, x, if Rwx then there is a u such that Rwu and Rux 

Proof: From 7.2 

 

Corollary 7.5: On any finite serial frame on which Comparative Transfer is valid, so is 

□□p   □p. 

Proof: From 7.4. 

 

Corollary 7.6: On any finite serial frame <W, R> on which Comparative Transfer is valid, for 

all w, x, y, if Rwx and Rwy but not Rww then Rxy. 

Proof: By 7.1, since Rwy, either for all z if Rwz then Rzy or for all z if Rzy then Rwz. The first 

disjunct implies that Rxy because Rwx. The second disjunct implies that Rww because Rwy.  
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Corollary 7.7: On any finite serial frame on which Comparative Transfer is valid, so is 

(□p   p)   (◊□q   □q). 

Proof: Suppose that □p   p is false at some w in a model based on such a frame <W, R>. 

Then not Rww. Suppose that ◊□q is true at w in the model, so □q is true at some x such that 

Rwx. Then whenever Rwy, by 7.6 Rxy, so q is true at y. Thus □q is true at w. 

 

Corollary 7.8: On any finite serial frame <W, R> on which Comparative Transfer is valid, for 

all w, x, y, z, if Rwx, Rxy, and Ryz, then either Rxw, or Ryx, or Rzy. 

Proof: Suppose that Rwx, Rxy, and Ryz. By 7.2, since Rxy, either Rxx or Ryy. Suppose that 

Rxx. So by 7.1 either for all u if Rxu then Rux or for all u if Rux then Rxu. Hence either if Rxy 

then Ryx or if Rwx then Rxw; thus either Rxw or Ryx. Similarly, if Ryy then either Ryx or Rzy. 

Hence either Rxw, or Ryx, or Rzy. 

 

Corollary 7.9: On any finite serial frame on which Comparative Transfer is valid, so is 

p   □(q    (◊p   □(r    (◊q   □◊r))). 

Proof: Suppose that the formula is false at some w in some model based on the frame. Then 

p is true and □(q   (◊p   □(r   (◊q   □◊r))) at w. Hence q   (◊p   □(r   (◊q   □◊r)) is 

false at some x such that Rwx. Hence q is true and both ◊p and □(r   (◊q   □◊r)) false at x. 

The former implies that not Rxw. The latter implies that r → (◊q   □◊r) is false at some y 

such that Rxy, so r is true and both ◊q and □◊r are false at y. The former implies that not 

Ryx. The latter implies that ◊r is false at some z such that Ryz. Hence not Rzy. That is 

impossible by 7.8. 

 

Corollary 7.10: On any finite reflexive frame <W, R> on which Comparative Transfer is valid, 

for all w, x, y, if Rwx and Rxy, then either Rxw or Ryx. 

Proof: A simplification of the proof of 7.8. 

 

Corollary 7.11: On any finite reflexive frame on which Comparative Transfer is valid, so is 

p   □(q    (◊p   □◊q)). 

Proof: A simplification of the proof of 7.9. 

 

Corollary 7.12: Suppose that Comparative Transfer is valid on a finite serial frame <W, R>. 

Then if Rwx but not Rww, either R(x) = W or R(x) = R(w). 

Proof: From 6.2 and 7.6. 

 

Corollary 7.13: If a serial frame <W, R> with |W| ≤ 3 satisfies the necessary conditions in 6.0 

and 7.0 for Comparative Transfer to be valid, then Comparative Transfer is valid on <W, R>. 

Proof: Suppose that X   W. If |X|= 1 then by 6.0 P>[P>[X]]   P>[X]; if |X| = 2 then by 7.0 

P>[P>[X]]   P>[X]. If |X| = 0 or |X| = 3 then P>[P>[X]] = {} so the case is trivial.    

 

Proposition 8.0: If Comparative Transfer is valid on a finite serial frame <W, R>, then for all 

w, x, y, z, if Rwx, Rxy, and Ryz, then for some u, Rwu and Ruz. 

Proof: It suffices to derive a contradiction from the hypothesis that Rwx, Rxy, Ryz, and there 

is no u such that Rwu and Ruz. First note that there are no shortcuts in the chain from w to 
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z, in the sense that not Rwy, not Rxz, and not Rwz. The first two are easy because we can 

put u = y and u = x respectively; the third follows from 7.4. But by an instance of 6.1: 

if Rwx, Rxy, not Rxz, not Rwz and not Rzy then Rwy. 

Thus, since Rwx, Rxy, not Rwz, and not Rwy, it follows that Rzy. By another instance of 6.1: 

for all v, if Rxy, Ryz, not Ryv, not Rxw, and not Rwz, then Rxz. 

Thus, since Rxy, Ryz, not Rwz, and not Rxz, this follows:  

(*) either Rxw or Ryv for all v.  

But by an instance of 7.1: 

if Rxy then either for all u if Rxu then Ruy or for all u if Ruy then Rxu. 

Thus, since Rxy, either if Rxw then Rwy or if Rzy then Rxz. But on the initial hypothesis we 

already have that Rzy, not Rxz, and not Rwy. Thus not Rxw. Hence, by (*), Ryv for all v. But 

by yet another instance of 7.1:  

if Rwx, Rxy, not Rxz, not Rwy, and for all v Ryv, then Rwy. 

This is a final contradiction, since on the initial hypothesis we already have that Rwx, Rxy, 

not Rxz, not Rwy, and for all v Ryv.   

 

Corollary 8.1: If Comparative Transfer is valid on a finite serial frame, then so too is 

□□p   □□□p. 

Proof: From 7.5 and 8.0 by standard model theory of modal logic. 

 

Proposition 9.0: If <W, R> is a finite serial frame such that whenever wW, xR(w), either 

R(w) = W or R(x) = W or R(x) = R(w), then Comparative Transfer is valid on <W, R>. 

Proof: If R(w) = W then for all YW Prw(Y) = Pr(Y) so wP>[Y].  

Suppose that wP>[X] and wP>[P>[X]]. Thus R(w) ≠ W (let Y = P>[X]). 

Suppose that for all xR(w) either R(x) = W or R(x) = R(w).  

If R(x) = W, then xP>[X]. If R(x) = R(w) then Prx(X) = Prw(X) so xP>[X] because wP>[X]. 

Thus for all xR(w), xP>[X]. Hence Prw(P>[X]) = 0, so wP>[P>[X]], contrary to hypothesis. 

 

Corollary 9.1: On some finite serial frames, Comparative Transfer is valid but none of 

□p   □□p, ◊p   □◊p, p   □◊p, and □p   p is valid. 

Proof: Consider the three-world frame where W = {a, b, c}, R(a) = {b}, R(b) = W, and R(c) = 

{c}. By 9.0, Comparative Transfer is valid on <W, R>. R is non-transitive, because Rab and Rbc 

but not Rac, so □p   □□p is not valid. R is non-euclidean because Rba and Rbc but not Rac, 

so ◊p   □◊p is not valid. R is non-symmetric because Rbc but not Rcb, so p   □◊p is not 

valid. R is non-reflexive because not Raa, so □p   p is not valid.  

 

Proposition 10.0: Let <W, R> be a finite serial frame such that for some x, zW, x ≠ z, xR(x) 

and for all yW, if y ≠ x then R(y) = {z}. Then Comparative Transfer is valid on <W, R>. 

Proof: Let <W, R>, x, z be as specified. Suppose that yP>[X] for some yW and XW. If y ≠ 

x then R(y) = {z} = R(z), so yP>[P>[X]] (as in the proof of 4.0). Thus it suffices to show that if 

xP>[X] then xP>[P>[X]]. There are two cases. 

Case (i): zX. We may assume that X ≠ W, otherwise P>[X] = {} so P>[P>[X]] = {} and we are 

done. Hence Pr(X) < 1. Now if y ≠ x, R(y) = {z}X so Pry{X} = 1, so yP>[X]. Since xR(x), 

W−R(x)  P>[X], so Pr(P>[X] | W−R(x)) = 1. Hence, by the principle of total probability: 



27 
 

Pr(P>[X]) = Pr(P>[X] | R(x))Pr(R(x)) + Pr(P>[X] | W−R(x))Pr(W−R(x))  

= Prx(P>[X])Pr(R(x)) + Pr(W−R(x)) 

≥ Prx(P>[X])Pr(R(x)) + Prx(P>[X])Pr(W−R(x)) = Prx(P>[X]) 

Hence xP>[P>[X]], as required. 

Case (ii) zX. Hence if y ≠ x, Pry[X] = 0, so yP>[X]. Thus if xP>[X], then Prx(P>[X]) = 0, hence 

xP>[P>[X]] and we are done. 

 

Proposition 11.0: Let <W, R> be a finite serial frame, with some zW such that for all xW, 

R(x) {x, z}. Then Comparative Transfer is valid on <W, R>. 

Proof: Let <W, R>, z be as specified, and xP>[X]. It suffices to show that xP>[P>[X]]. There 

are two cases. 

Case (i): zX. As in the proof of 10.0, we may assume that X ≠ W, so Pr(X) < 1. Observe that 

X   P>[X], for if yX then R(y)   {y, z}   X, so Pry(X) = 1 > P>[X], so yP>[X]. Thus:  

Pr(X) ≤ Pr(P>[X])  

Since xP>[X] and zX, P>[X] R(x)   X R(x), so:  

Prx(P>[X]) ≤ Prx(X)  

Since xP>[X]:  

Prx(X) ≤ Pr(X) 

Thus Prx(P>[X]) ≤ Prx(X) ≤ Pr(X) ≤ Pr(P>[X]), so xP>[P>[X]], as required. 

Case (ii): zX. Since R(z) = {z}, Prz[X] = 0, so zP>[X]. Hence if if xP>[X] then P>[X] R(x) = {}, 

so Prx(P>[X]) = 0, so xP>[P>[X]], and we are done. 

 

Proposition 12.0: The condition on R for Comparative Transfer to be valid on a finite serial 

frame <W, R> is not expressible in first-order logic without identity. 

Proof: Let W = {0, 1, 2}, R(0) = {0, 1}, R(1) = {1}, R(2) = {2}, W* = {0, 1, 2, 3},  f be the function 

from W* onto W such that f0 = 0, f1 = 1, f2 = f3 = 2, and for all j, k in W*, R*jk iff Rfjfk. Thus 

2 and 3 are indiscernible in terms of R*. By standard non-modal model theory, the models 

<W, R> and <W*, R*> satisfy the same formulas in the language of first-order logic with just 

one predicate letter and without identity, which is binary. Since for all j in W, R(j) {j, 2}, by 

11.0 Comparative Validity is valid on <W, R>. But Comparative Transfer is not valid on 

<W*, R*>. For let Pr be the uniform probability distribution over W*, and X = {1, 3}, so Pr(X) 

= ½. Now Pr0(X) = Pr2(X) = Pr3(X) = ½, Pr1(X) = 1, so Pr>[X] = {1}, so Pr(Pr>[X]) = ¼. 

Consequently, Pr0(Pr>[X]) = ½, so 0Pr>[Pr>[X]], but 0Pr>[X]. Since <W*, R*> differs from 

<W, R> with respect to the validity of Comparative Transfer but not with respect to which 

formulas of first-order logic without identity are satisfied, the former cannot be expressed in 

terms of the latter. 

 

Corollary 12.1: The necessary conditions in 6.0 and 7.0 for Comparative Transfer to be valid 

on a finite serial frame are not jointly sufficient. 

Proof: By 6.1 and 7.1, those necessary conditions are expressible in first-order logic without 

identity, so by 12.0 they are not jointly sufficient. 

 

Proposition 13.0: There is a finite serial frames on which Comparative Transfer is valid such 

that Comparative Transfer is not valid on the union of two disjoint copies of that frame. 
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Proof: Let W = {0, 1}, R(0) = {0, 1}, R(1) = {1} W* = {2, 3}, R*(2) = {2, 3}, R*(3) = {3}; thus 

<W, R> and <W*, R*> are isomorphic. By 9.0, Comparative Transfer is valid on <W, R> and 

<W*, R*>. But it is not valid on <WW*, R R*>. For let Pr be the uniform probability 

distribution over W and X = {1, 2}, so Pr(X) = ½. Thus Pr0(X) = Pr2(X) = ½, Pr1(X) = 1, and Pr3(X) 

= 0, so Pr>[X] = {1}, so Pr(Pr>[X]) = ¼. Thus Pr0(Pr>[X]) = ½, so 0Pr>[Pr>[X]], but 0Pr>[X]. 

 

Proposition 14.0: For a (0, 1), the validity of Thresholda Transfer and the validity of 

Comparative Transfer are independent conditions on a frame. 

Proof: The union frame in the proof of 13.0, on which Comparative Transfer is invalid, meets 

the condition for the validity of Thresholda Transfer. Conversely, the latter condition entails 

transitivity, so Thresholda Transfer is invalid on those non-transitive frames on which 

Comparative Transfer is valid (see 9.1). 

 

We make the following definitions for a frame <W, R> (  expresses proper subsethood): 

<W, R> is quasi-nested iff for all w, x, y, zW, if Rwx, Rwy, Rxz, and Ryz, then either Rxy or 

Ryx. 

R0(w) = R(w) {u: R(u) = R(w)} 

R1(w) = R(w) {u: R(u) R(w) and for no vR(w): R(u) R(v) R(w)} 

 

Observation 15.0: A quasi-nested serial frame is quasi-reflexive.  

Proof: Put x = y in the definition of ‘quasi-nested’. 

 

Proposition 15.1: Let <W, R> be a finite serial transitive quasi-nested frame. If x, yR1(w) 

then either R(x) = R(y) or R(x) R(y) = {}. 

Proof: Suppose that R(x) R(y) ≠ {}. Hence, for some z, Rxz and Ryz. Since R1(w)R(w), Rwx 

and Rwy. Thus, since R is quasi-nested, either Rxy or Ryx. Without loss of generality, 

suppose that Rxy. Thus, since R is transitive, R(y)R(x). Suppose that R(x) ≠ R(y). Hence R(y)

 R(x). But xR1(w), so R(x) R(w). Thus R(y) R(x) R(w), contradicting the hypothesis 

that yR1(w). Hence R(x) = R(y). 

 

Proposition 15.2: Let <W, R> be a finite serial transitive quasi-nested frame, wW, and J 

consist of one member from each equivalence class of the equivalence relation defined by 

R(x) = R(y) over R1(w). Then R0(w) and R(j) for jJ partition R(w). Moreover, if j and k are 

distinct members of J then R(j) R(k) = R0(w) R(j) = {}. 

Proof: By definition, R0(w)R(w) and R(j) R(w) for jJR1(w), so R0(w) ( j J R(j))

R(w). For the converse, let xR(w). Since R is transitive, R(x)R(w). If R(x) = R(w) then x

R0(w) and we are done, so suppose that R(x) R(w). Since W is finite, there is a sequence x0, 

x1, …, xn all in R(w) of maximal length such that x0 = x and for 0 ≤ i < n, R(xi) R(xi+1) R(w). 

So there is no vR(w) such that R(xn) R(v) R(w), otherwise we could put v = xn+1. Thus xn

R1(w), so for some kJ R(k) = R(xn). Since xR(w) and by 15.0 R is quasi-reflexive, xR(x) = 

R(x0)R(xn) = R(k), so x  j J R(j). Thus R(w) = R0(w) ( j J R(j)). Moreover, if j and k are 

distinct members of J then R(j) ≠ R(k), so R(j) R(k) = {} by 15.1, and if xR(j) then by 

transitivity R(x)R(j) R(w), so xR0(w). 
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Proposition 15.3: Let <W, R> be a finite serial transitive quasi-nested frame, b [0, 1], XW, 

wW, and Pr a regular probability distribution on <W, R>. Then bPrw(P≥b[X]) ≤ Prw(X). 

Proof: We use induction on |R(w)|. The base case is vacuous because R is serial. Suppose 

that for all xW such that |R(x)| < |R(w)|, bPrx(P≥b[X]) ≤ Prx(X). We have two cases to 

consider. 

Case (i): Prw(X) ≥ b. Hence bPrw(P≥b[X]) ≤ b ≤ Prw(X), as required. 

Case (ii): Prw(X) < b. Now for all uR0(w), R(u) = R(w), so Pru(X) = Prw(X) < b, so R0(w) P≥b[X] 

= {}, so Pr(P≥b[X]|R0(w)) = 0. By 15.2, for any YW: 

(*)   Prw(Y) = Pr(Y|R(w))  = Pr(Y|R0(w) ( j J R(j)))  

= Pr(Y|R0(w))Prw(R0(w)) +  j J Pr(Y|R(j))Prw(R(j)) 

    = Pr(Y|R0(w))Prw(R0(w)) +  j J Prj(Y)Prw(R(j)) 

By (*) for Y = Pr≥b[X]: 

Prw(P≥b[X])  = Pr(Pr≥b[X]|R0(w))Prw(R0(w)) +  j J Prj(Pr≥b[X])Prw(R(j))  

=  j J Prj(Pr≥b[X])Prw(R(j)) 

But if jJ then R(j) R(w), so |R(j)| < |R(w)| because W is finite, so by the induction 

hypothesis bPrj(P≥b[X]) ≤ Prj(X). Thus: 

bPrw(P≥b[X]) =   j J bPrj(Pr≥b[X])Prw(R(j))  

≤  j J Prj(X)Prw(R(j)))  

≤ (Pr(X|R0(w))Prw(R0(w)) +  j J Prj(X)Prw(R(j))) 

= Prw(X) 

by (*) for Y = X, as required. This completes the induction. 

 

Corollary 15.4: Let <W, R> be a finite serial transitive quasi-nested frame, a, b [0, 1], XW, 

and Pr a regular probability distribution on <W, R>. Then Pr≥a[Pr≥b[X]]Pr≥ab[X]]. 

Proof: For wPr≥a[Pr≥b[X]], ab ≤ bPrw(Pr≥b[X]) ≤ Prw(X) by 15.3, so wPr≥ab[X], as required. 

 

Proposition 15.5. The principle Pr≥a[Pr≥b[X]]Pr≥ab[X]] is valid on a finite serial frame for all 

a, b[0, 1] if and only if the frame is transitive and quasi-nested. 

Proof: Given 15.4, we need only prove the left-to-right direction. Suppose that Pr≥a[Pr≥b[X]]

Pr≥ab[X]] is valid on a finite serial frame <W, R> for all a, b [0, 1]. 

First, note that <W, R> is transitive by Proposition 1.0 for a = b > 0. 

Second, we show that <W, R> is quasi-reflexive. For suppose that Rwx but not Rxx, so w ≠ x. 

Let |W| = n ≥ 2. Define a probability distribution Pr over W thus: 

 Pr({x}) = 2/3 

 Pr({y}) = 1/3(n – 1) for y ≠ x 

Then Prx(W – {x}) = 1, so xPr≥1[W – {x}], so Prw(Pr≥1[W – {x}]) ≥ Prw({x}) ≥ 2/3, so w

Pr≥2/3[Pr≥1[W – {x}]], but Prw(W – {x}) = 1 – Prw({x}) ≤ 1 − Pr({x}) = 1/3, so wPr≥2/3(W – {x}). 

Finally, we show that <W, R> is quasi-nested. For suppose otherwise. Then for some w, x, y, 

zW, if Rwx, Rwy, Rxz, Ryz, but neither Rxy nor Ryx; thus w ≠ x, w ≠ y, x ≠ z, and y ≠ z. Since 

R is quasi-reflexive, Rxx, Ryy, and Rzz; thus x ≠ y. Since R is transitive, Rwz but neither Rzx 

(otherwise Ryx) nor Rzy (otherwise Rxy); thus w ≠ z. Hence |W| = n ≥ 4. Define a probability 

distribution Pr over W thus: 
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 Pr({x}) = Pr ({y}) = 6/25 

 Pr({z}) = 12/25 

 Pr({u}) = 1/25(n – 3) for u{x, y, z} 

Since {z}R(z)W – {x, y}), Prz({z}) ≥ 12/13 > 12/19. Since {x, z}R(x)W – {y}:  

Prx({z}) = Pr({z})/Pr(R(x)) ≥  Pr({z})/Pr(W – {y}) = 12/19 

Similarly, Pry({z}) ≥ 12/19. Hence {x, y, z}P≥12/19[{z}]. Thus:  

Prw(P≥12/19[{z}]) ≥ Prw({x, y, z}) ≥ Pr({x, y, z}) = 24/25. Hence wP≥24/25[P≥12/19[{z}]]. But {x, y, z}

R(w), so Prw({z}) = Pr({z})/Pr(R(w) ≤ Pr({z})/Pr({x, y, z}) = ½ < (24/25)(12/19) = 288/475, so 

wPr≥288/475({z}). Thus the principle Pr≥24/25[Pr≥12/19[X]]Pr≥288/475[X]] is not valid on the 

frame, contrary to hypothesis. 
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Notes 

 

1 There is a subtlety here, for if E=K is true, why should it follow that the agent knows 

E=K? If one is an agent who doesn’t know E=K, couldn’t one know that one knows X 

without knowing that X is part of one’s evidence, or vice versa? In practice, however, 

the putative counterexamples to positive introspection for knowledge do not 

depend on whether the agent knows E=K, so one can stipulate that the agent does 

know it. Thus positive introspection principles for knowledge and for evidence stand 

or fall together, given E=K, even though, if they fall together, the nonempty class of 

counterexamples to one differs slightly from the nonempty class of counterexamples 

to the other. Epistemic logic in any case tends not to treat such subtle differences in 

mode of presentation as differences in what is known, since it treats knowledge as 

closed under truth-functional entailment.   

 

2 In this context a normal modal logic, identified with the set of its theorems, is a set 

of formulas of a standard language for monomodal propositional logic (with □ as the 

only primitive modal operator) containing all truth-functional tautologies and the K 

axiom □(p   q)   (□p   □q) and closed under uniform substitution, modus 

ponens, and the rule of necessitation. The correspondence result can be proved by 

the standard method of canonical models (see e.g. Hughes and Cresswell 1984: 22-

7). 

 

3 To derive quasi-truth from negative introspection, consider two cases: (i) p truth-

functionally entails □p   p, so by normality □p entails □(□p   p); (ii) ¬□p truth-

functionally entails □p   p, so by normality □¬□p entails □(□p   p); but by negative 

introspection and normality, ¬□p entails □¬□p. 

 

4 Such frames also have the convergence property that if Rwx and Rwy then for some 

z both Rxz and Ryz, which corresponds to the modal axiom ◊□p   □◊p. Since they 

are reflexive and transitive too, they validate the modal system proposed as a logic 

of knowledge in Stalnaker 2006. 

 

5 One objection to Positive Introspection for knowledge is that a simple creature with 

no grasp of the distinction between knowing and not knowing may still know truths 

about its environment, but without being able to so much as entertain the truth that 

it knows them. This objection does not generalize against the principle that if you 

know that you know, then you know that you know that you know, for if you know 

that you know then in the required sense you do grasp the distinction between 

knowing and not knowing. However, such objections are too fine-grained for the 

present setting, where logical omniscience is assumed: if you know one truth but 

cannot grasp another you presumably cannot grasp their disjunction either, which 

follows from the truth you do know. For present purposes we are accepting the 

principle □p   □(p   q), which is valid in all standard epistemic models. 
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6 Compare the models in the appendix to Salow 2015, used for a related purpose. The 

subsets of any given set ordered by the subset relation also have the convergence 

property. As a result, the frame in the text validates the logic S4.2; see footnote 4. 

 

7 An earlier version of this material was presented at Oxford and a British Academy-

funded conference on epistemology in Cambridge; I thank participants for useful 

suggestions, and Bernhard Salow, Kevin Dorst, and John Hawthorne for valuable 

discussion and correspondence. 
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