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The word I most associate with Delia Graff Fara is ‘sharp’—sharp philosophy, sharp wit, 

sharp Delia. I first met her in early 1994, as a visiting professor at MIT. She came to my 

graduate class on vagueness, based on the proofs of my forthcoming book (Williamson 

1994). The other students included Jason Stanley (my TA), Zoltán Szabó, Kathrin Koslicki, 

and Steven Gross; Judith Jarvis Thomson and Paul Horwich came from the faculty. I can, I 

hope, take some of the credit for sparking Delia’s interest in vagueness. She was cautiously 

quiet in class, but towards the end of the semester presented me with rough notes for what 

later developed into ‘Phenomenal Continua and the Sorites’ (Graff 2001). I was struck by her 

ruthless application of precise mathematics to what might look on the surface like 

hopelessly recalcitrant material. Of course, the brilliantly creative and ingenious ideas about 

vagueness for which she is known are categorically hers. Still, I was gratified when I once 

suggested to her that her distinctively interest-relative theory of vagueness in ‘Shifting 

Sands’ (Graff 2000) has a layer of epistemicism in its foundations; she immediately agreed.1  

 Delia and her husband Michael became my good friends, as well as my co-authors 

(Graff and Williamson 2002, Fara and Williamson 2005). My paper on higher-order 

vagueness (Williamson 1999) emerged out of extended conversation and email exchanges 

with her; together, we worked through the drawbacks of one proposal after another about 

how to define nth-order vagueness. We had a constructive exchange on the mathematical 

consequences of epistemicist models of vagueness (Graff 2002, Williamson 2002). The more 

technical a problem got, the more Delia relished it, while never losing sight of the bigger 

philosophical picture. When I was invited to edit an anthology on vagueness, I asked her to 

co-edit it with me, because I trusted her judgment; also, her knowledge of the recent 

literature was better than mine. We wrote the introduction together (Graff and Williamson 

2002). 

 In discussion, Delia was in the best way a stickler for accuracy and precision. If her 

point, typically a steely-sharp point, was not properly answered, she would politely but 

relentlessly insist. She would accept no diplomatic fudge. But she was the opposite of grim, 

the first to see the funny side. She was exactly the kind of person philosophy can least 

spare: a temptation fate would not resist. 

 The present paper takes up one of Delia’s lesser-known contributions to the theory 

of vagueness, an insight whose significance has, I believe, been underestimated. I will 

explain her idea, illustrate extensions of it, and argue that attempts to deny it vastly 

underestimate the difficulty of meeting her challenge. It concerns supervaluationist theories 

of vagueness. 

 

 

1. Background 

 

Supervaluationists treat vagueness as a kind of semantic underdetermination. The 

community’s use of its language fails to determine unique semantic values for its 

expressions. Many different assignments are in some (under-explained) sense compatible 

with use—even in a given context (this relativity to context will henceforth be left tacit). Call 

those assignments compatible with use reasonable. There is nothing vague in any one such 
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assignment, considered in itself. A given sentence is either true on a given assignment or 

false on that assignment, and not both.2 The vagueness consists in the multiplicity of 

reasonable assignments. In particular, a sentence is borderline if it is true on some 

reasonable assignments and false on others: its use and the world together underdetermine 

its truth-value. By contrast, a sentence is supertrue if and only if it is true on every 

reasonable assignment, and superfalse if and only if it is false on every reasonable 

assignment. The borderline sentences are those which are neither supertrue nor superfalse. 

 Traditional supervaluationism identifies truth with supertruth and falsity with 

superfalsity, not with truth and falsity respectively on the intended assignment, because 

there is no intended assignment. Use determines only supertruth and superfalsity. Thus 

every theorem of classical logic is true, because supertrue, because true on every 

reasonable assignment. That includes all instances of the law of excluded middle. However, 

not every sentence of a vague language is either true or false, because borderline sentences 

are neither supertrue nor superfalse. Consequently, standard disquotational biconditionals 

for truth are held to fail. 

 A variant form of supervaluationism identifies truth with disquotational truth rather 

than supertruth (McGee and McLaughlin 1994). An ascription of disquotational truth to a 

sentence α is true on an assignment if and only if α itself is true on that assignment. This 

variant has the advantage over the traditional version of making standard disquotational 

principles for truth come out true, indeed supertrue. It also has the result that every 

sentence is either true or false. However, as a consequence, although its proponents are 

officially anti-epistemicist, they have the greatest difficulty in distinguishing their view from 

a form of epistemicism (Williamson 1994: 162-4, 2004). The present paper concerns only 

the more standard form of supervaluationism, which identifies truth with supertruth, and 

falsity with superfalsity. This view goes back to the 1950s (Williamson 1994: 143-6). A classic 

exposition is by Kit Fine (1975), though he no longer holds the view. A contemporary 

defender of standard-form supervaluationism is Rosanna Keefe (2000). 

 Speakers may wish to talk in the object-language about borderline status. The 

natural way to do that is by adding an operator D, read ‘definitely’, corresponding to 

supertruth, to the object-language. A borderline case is neither definitely on one side nor 

definitely on the other. The idea is roughly that, for any sentence α, Dα is true on an 

assignment if and only if α is true on every reasonable assignment. 

 We can easily turn these ideas into a simple model theory for a formal propositional 

language with a D operator and a standard set of truth-functors. A model is an ordered pair 

<W, V>, where W is a nonempty set, whose members are known as points (rather than the 

worlds of modal logic); informally, we think of them as the reasonable assignments; V is a 

function mapping each atomic formula of the language to a subset of W, the set of points at 

which it is true. In a given model, if a formula α is true at every point, then Dα is also true at 

every point in W; otherwise, Dα is false at every point in W. The semantics for the truth-

functors is as usual: ¬α is true at a point w if and only if α is not true at w, α β is true at w if 

and only if α is true at w or β is true at w, and so on. Correspondingly, α is supertrue in the 

model if and only if α is true at every point, in which case so is Dα; α is superfalse in the 

model if and only if α is false at every point, in which case so is D¬α. Whereas models for 

modal logic often have one designated world, informally conceived as the ‘actual’ world, 
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supervaluationist models have no designated point, because there is not meant to be an 

‘intended’ world. 

 What is the appropriate model-theoretic relation of logical consequence in this 

setting? One proposal is that a valid argument is one that preserves truth at any given point 

in any given model, which is known as local validity: 

 

Local validity  

Г ⊨L α  =def  for every model <W, V> and wW, if γ is true at w in <W, V> for all γГ, then α 

is true at w in <W, V>. 

 

Formally, local validity is a nice classical consequence relation, but it does not suit the spirit 

of standard supervaluationism. For validity is supposed to be truth-preservation, and 

standard supervaluationists equate genuine truth with supertruth, not with truth on a given 

assignment. For them, a genuinely valid argument is one that preserves supertruth in any 

given model, a different consequence relation known as global validity: 

 

Global validity  

Г ⊨G α  =def  for every model <W, V>, if γ is true at w in <W, V> for all γГ and wW, then α 

is true at w in <W, V> for all wW. 

 

Kit Fine (1975), Rosanna Keefe (2000: 174) and many others have treated global validity as 

the appropriate consequence relation for supervaluationism. 

As so often with vagueness, there is a catch: higher-order vagueness. ‘Reasonable’ is 

itself vague, which makes D vague too, so its semantic value and that of many sentences 

containing it should themselves vary from one reasonable assignment to another. In the 

simple semantics just sketched, in any given model, for any given formula α, Dα is true at 

every point or none, so DDα D¬Dα is valid (both globally and locally). In other words, it is 

always definite whether something is definitely so. Yet ‘definitely red’ seems just as sorites-

susceptible as ‘red’, and so on for other cases of vagueness. Some supervaluationists have 

denied that D can be expected to measure its own vagueness (Keefe 2000: 210). However, 

there is nothing obviously inconsistent or unintelligible in the hypothesis that it is indefinite 

whether something is definite. 

A more natural strategy for the supervaluationist is to follow the example of modal 

logic, where Kripke showed how to implement model-theoretically its being contingent 

whether something is necessary, by introducing an accessibility relation R between worlds. 

Informally, a world x is accessible from a world w if and only if x would be possible if w 

obtained. Formally, □α is true at w if and only if α is true at every world x such that Rwx. 

Since two worlds may differ in which worlds are accessible from them, □α may be true at 

one and false at the other. The supervaluationist analogue is to implement model-

theoretically its being indefinite whether something is definite, by introducing an 

accessibility relation R between points. Informally, an assignment x is accessible from an 

assignment w if and only if x is reasonable according to w. Formally, Dα is true at w if and 

only if α is true at every point x such that Rwx. Since two points may differ in which points 
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are accessible from them, Dα may be true at one and false at the other. In effect, each 

assignment makes its own determinations of which assignments are reasonable. 

 The only formal constraint on the accessibility relation imposed here is reflexivity: 

every assignment is reasonable according to itself. This validates the plausible principle that 

whatever is definitely so is indeed so (Dα → α). If accessibility is also symmetric and 

transitive, then it is an equivalence relation, which validates the analogue for D of the strong 

modal logic S5; in particular, it validates the problematic theorem DDα D¬Dα. However, 

that principle can be shown to fail whenever accessibility is either non-symmetric or non-

transitive, but still reflexive.3 

 Supervaluationist models are now triples <W, R, V>, where W and V are as before 

and R is the accessibility relation. Since the point of the D operator is to represent 

supertruth in the object-language, supertruth must now be defined at a point: in the model, 

α is supertrue at w if and only if Dα is true at w, which in turn is so if and only α is true at all 

points x such that Rwx. Since validity is meant to be truth-preservation, and standard 

supervaluationists equate genuine truth with supertruth, in the setting of this more 

sophisticated model theory they should regard a genuinely valid argument as one that 

preserves supertruth at any given point in any given model. That is not global validity but 

what, following Cobreros (2008), we may call regional validity (Williamson 1994: 297 n32):4 

 

Regional validity  

Г ⊨R α  =def  for every model <W, R, V> and wW, if γ is true at w* in <W, R, V> for all γГ 

and w* such that Rww*, then α is true at w* in <W, R, V> for all w* such that Rww*. 

 

 The main considerations in this paper are independent of higher-order vagueness. 

Although we leave room for it by not requiring accessibility to be an equivalence relation, 

the arguments still work even if that constraint is imposed. Indeed, they work for both 

regional validity and global validity; for convenience, some will be stated just in terms of 

regional validity. Although other accounts of validity have been proposed within a 

supervaluationist setting (Williamson 1994: 148, Varzi 2007, Williams 2008), the standard of 

regional validity is rooted in a very natural line of thought from a standard supervaluationist 

perspective. If supervaluationists abandon it, they incur the suspicion that they are not 

serious about their identification of truth with supertruth. 

 In the fragment of the language without the D operator, global validity, regional 

validity, and classical validity all coincide. For if the argument from Г to α is classically 

invalid, then on some assignment all formulas in Г are true while α is false; that assignment 

can be turned into a supervaluationist model with just one point, at which all formulas in Г 

are supertrue while α is superfalse, so the argument is globally and regionally invalid too. 

Conversely, if the argument is classically valid, then it preserves truth on any given 

assignment, so it preserves truth at any given point in any given supervaluationist model, 

since the rest of the model makes no difference to the evaluation of D-less formulas, the 

argument is globally valid too. 

 Even in the full language with D, classical truth-functional validity still entails global 

and regional validity. More precisely, if the argument from Γ to α is classically valid and D-

free, then it is also globally and regionally valid, so for any uniform substitution σ into the 
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full language, the argument from σΓ to σα is also globally and regionally valid, because both 

global validity and regional validity are closed under uniform substitution. In that narrow 

sense, the logics of global validity and regional validity are classical. 

 In a broader sense, however, the logics of global validity and regional validity are 

non-classical. For they violate some standard meta-rules, rules connecting the validity of 

several arguments. In particular, they violate meta-rules involving the discharge of premises 

(Williamson 1994: 151-2, 297n32). They include conditional proof, otherwise known as the 

deduction theorem and as the introduction rule for the conditional (if Γ {α} entails β then Γ 

entails α → β), reductio ad absurdum (if Γ {α} entails the contradiction  , then Γ entails 

¬α), argument by cases, otherwise known as the elimination rule for disjunction (if Γ {α} 

entails γ and Δ {β} also entails γ, then Γ Δ {α β} entails γ), and contraposition (if Γ

{α} entails β then Γ {¬β} entails ¬α). Such rules are of course frequently used in ordinary 

deductive reasoning, not least in mathematics. 

 To see how the failure happens in the case of conditional proof, consider the formula 

p ¬Dp, where p is atomic. Suppose that, in a model <W, R, V>, p ¬Dp is supertrue at some 

wW. Thus p is supertrue at w, so p is true at all w* such that Rww*. Similarly, ¬Dp is 

supertrue at w, so ¬Dp is true, and Dp false, at all w* such that Rww*. But R is reflexive, by 

hypothesis, so Rww, so Dp is false at w, so p is false at some w* such that Rww*, by the 

semantic clause for D. Thus p is both true and false at some w*: a contradiction. So p ¬Dp 

is not supertrue at any point in any model. Consequently, the argument from {p ¬Dp} to 

any conclusion, including  , is vacuously regionally valid: {p ¬Dp} ⊨R  . Hence, if ⊨R 

obeys conditional proof, ⊨R (p ¬Dp) →  , so ⊨R p → Dp, since the two formulas are truth-

functionally equivalent. But a supervaluationist counter-model to p → Dp can be built from 

any accessibility relation that holds between two points, so not ⊨R p → Dp. Thus regional 

validity violates conditional proof. By a similar argument, global validity also violates 

conditional proof. Under supervaluationism, restricting the models to validate conditional 

proof would mean ruling out vagueness. 

 Similar arguments show that global validity and regional validity also violate reductio 

ad absurdum, argument by cases, and contraposition, since conditional proof is derivable 

from any one of those meta-rules in this setting.5, 6 

 The meta-rules are defined in terms of the given consequence relation for the 

language, in this case global or regional validity. Thus whether the meta-rules hold for a 

language supervenes on the consequence relation for that language; no difference in the 

former without a difference in the latter. For the D-free fragment, they all hold for global 

and regional validity because they coincide with classical truth-functional validity, for which 

they hold. They can fail for global and regional validity in the language with D only because 

there no such coincidence obtains.8 

 Some confusion arose about the status of the meta-rules for global validity because 

Kit Fine originally illustrated the failure of conditional proof for global validity with the 

argument from p to Dp (Fine 1975: 290), which is globally valid, even though the formula 

p → Dp is not globally valid. By contrast, Dp is not a regional consequence of p, since the 

supertruth of p at a point does not imply the supertruth of Dp at that point in a model with 

a non-transitive accessibility relation. This misled some authors (not Fine) into denying that 

the meta-rules fail once higher-order vagueness is taken into account.7 The example used 
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earlier shows that all the meta-rules at issue fail for both global and regional validity even 

when account is taken of higher-order vagueness (Williamson 1994: 297n32). The proof 

works when the accessibility relation is (harmlessly) constrained to be reflexive in all 

models, whether or not it is also constrained to be symmetric and transitive. 

 As usual, one can complicate the model theory and the models to avoid the 

inconvenient results, for instance by making the argument from {p ¬Dp} to   invalid in 

another sense. Such effects are typical artefacts of building too many degrees of freedom 

into one’s models.10 On a more appropriate model theory for supervaluationism, like that 

above, the four meta-rules at issue do indeed fail for the relevant standard of validity.  

 Supervaluationists have used their semantic framework to provide semantic 

accounts of comparative and superlative adjectives and of modifiers such as ‘rather’, ‘in a 

sense’, and ‘-ish’, starting with work by David Lewis (1972: 216) and Hans Kamp (1975: 137-

45). Such accounts generate further violations of the meta-rules for global and regional 

validity (Williamson 1994: 295-6n25). Thus the violations are not confined to arguments 

with a ‘definitely’-like operator; they also occur in the presence of more innocuous-looking 

natural language constructions.  

 Reasoning to a standard of global or regional validity seems to be a tricky business. 

Some supervaluationists have responded by proposing non-standard variants of the meta-

rules that avoid such counterexamples. For instance, Rosanna Keefe suggests formulations 

in which D is inserted at appropriate points into the concluding argument (2000: 179-81). 

Her modified form of conditional proof states that if Γ {α} entails β then Γ entails Dα → β, 

which holds for global validity in the simple models with no accessibility relation, and for 

regional validity in the models with such a relation. However, it fails for global validity in the 

more complex models, since the argument from p to DDp is globally valid, but Dp → DDp is 

not. By contrast, McGee and McLaughlin avoid inserting D by in effect restricting the 

reasoning from Γ {α} to β to ‘modes of inference that are known to preserve truth in each 

acceptable model’ (2004: 135; their framework is slightly different from mine). Williams 

(2008) suggests a version where the argument from Γ {α} to β is valid by one standard 

while the argument from Γ to α → β is valid by another. 

 Is ordinary deductive reasoning in science—for instance, in drawing consequences 

from a theory—sensitive to any of the proposed restrictions on the meta-rules? That is far 

from obvious. Still, supervaluationists might claim that the restrictions are rarely needed, 

and if we occasionally violate them, that is our fault. 

 The debate has sometimes focussed on whether the contested meta-rules are ‘part 

of classical logic’. That has not been very fruitful. They are in a broad sense of ‘classical 

logic’, but not in a narrower sense. A more interesting question is how much of our 

deductive practice will be lost if the meta-rules are restricted. 

 

 

2. Graff Fara’s contribution 

 

Graff Fara discusses the more interesting question in the latter half of her seminal paper 

‘Gap Principles, Penumbral Consequence, and Infinitely Higher-Order Vagueness’ (Graff 

2003). A component of the supervaluationist defence had been that the problems for the 
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meta-rules arise only when operators that trade on vagueness are in play: for instance, in 

English, ‘definitely’, ‘rather’, ‘in a sense’, ‘-ish’, and perhaps ‘-er’. As Rosanna Keefe put it, 

‘the cases in which these rules fail all involve the D operator (or similar such devices)’ (200: 

178). Graff Fara showed that this was not so. 

 Graff Fara’s examples involve arguments in ordinary English, evaluated according to 

supervaluationist semantics.9 The standard of validity she applies is not meant to be purely 

logical; rather, she intends a lower standard, one more relevant to reasoning in at least 

some contexts. She assumes, very plausibly, that in much of our deductive reasoning we 

intend the truth of the premises in some sense to guarantee the truth of the conclusion, but 

we do not care whether the guarantee is purely logical or instead depends on a shared 

conversational background. For example, the argument from ‘It’s red’ to ‘It’s coloured’ is 

good enough for the purposes of most contexts, even though its validity is not strictly 

logical. It might be called a standard of materially good deduction. In model-theoretic 

terms, the supervaluationist may naturally conceive such a standard of material goodness as 

restricting the models, and points within those models, with respect to which regional 

validity is assessed. 

Here is one of Graff Fara’s examples (Graff 2003: 208). First consider argument IIB 

(her tag): 

 

Argument IIB 

 X is tall. 

 Y is not tall. 

 Therefore, X is more than a millimetre taller than Y. 

 

In some contexts, the supertruth of the premises of IIB guarantees the supertruth of its 

conclusion. For, given how vague ‘tall’ is, the borderline zone is definitely more than a 

millimetre wide (if you doubt that, Graff Fara invites you to work with a smaller distance). 

Hence, if X is definitely tall and Y is definitely not tall, then X is definitely more than a 

millimetre taller than Y. Thus IIB is regionally valid in the relevant material sense. Now try 

contraposing the second premise and the conclusion of IIB, and deleting the double 

negation in the conclusion (the latter being a harmless move for a supervaluationist). The 

result is IIA: 

 

Argument IIA 

 X is tall. 

 X is no more than a millimetre taller than Y. 

 Therefore, Y is tall. 

  

Argument IIA is not regionally valid in the relevant material sense. If X is definitely tall, and 

definitely no more than a millimetre taller than Y, Y may still not be definitely tall. As Graff 

Fara points out, IIA generates a sorites paradox for tallness, even by supervaluationist 

standards, while IIB does not.11 Thus contraposition fails from IIB to IIA. 

 Strictly speaking, both arguments involve the comparative operators ‘more’ and ‘-

er’, whose semantics may be given in a supervaluationist framework. This is an inessential 
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feature. We could replace the conclusion of IIB and the second premise of IIA with a 

sentence in mathematical notation about the relative heights of X and Y. In Graff Fara’s 

other main example, the role of ‘is no more than a millimetre taller than’ is played by ‘looks 

the same as’, which is not a comparative in the relevant sense (Graff 2003: 215-17; ‘looks 

red’ plays the role of ‘is tall’). Neither ‘definitely’ nor any similar device occurs in the 

premises or conclusions of the spruced-up versions of IIA or IIB. Of course, they contain the 

vague adjective ‘tall’, but that is quite different from containing an operator, such as 

‘definitely’, ‘rather’, or ‘-ish’, whose function involves interacting with vagueness in some 

way. Virtually any argument in natural language contains some vagueness. The putative 

failure of the meta-rules would be a limited phenomenon if it arose only for arguments 

containing operators that trade on vagueness; to say that it arises only for arguments 

containing vague terms is hardly any limitation at all. 

 Could a supervaluationist maintain that since the operative standard of validity is 

supertruth-preservation, and the D operator is a device for explicitness about supertruth in 

the object-language, D is implicitly present in all these arguments? As Graff Fara points out, 

that defence burns supervaluationism with friendly fire, by making D far more generally 

present than it appears to be (Graff 2003: 218). 

 A more discriminating idea is that to appreciate the material regional validity of IIB 

one must in effect think about vagueness in a way not required for appreciating material 

regional validity in most arguments containing vague terms. For clearly, if ‘tall’ were precise, 

IIB would be materially regionally invalid, even though the conditional probability of the 

conclusion on the premises might be high. The key to its material regional validity is the 

width of the borderline zone between the definitely tall and the definitely non-tall.  

In response, the supervaluationist might point out that we rarely accept arguments 

like IIB, so the problem with contraposing them rarely arises. However, drawing attention to 

the unnaturalness of IIB is a dangerous move for a supervaluationist to make. For IIB itself 

feels far less compelling than does the step of contraposition from IIB to IIA, even if one 

reduces the distance at issue from a millimetre to something much less (but not zero). If one 

wants to avoid being drawn into the soritical argument IIA, the pre-theoretically natural way 

to do it is by not accepting IIB in the first place, rather than by accepting IIB and then 

refusing to contrapose. However materially restricted, regional validity does not come 

naturally as a standard for judging the material goodness of vague deductive arguments in 

one’s native language. That is awkward for the supervaluationist who proffers regional 

validity as the appropriate standard.  

Of course, native speakers may be confused about the logic of their own language. 

Nevertheless, supervaluationists have typically defended their account of the logic of vague 

languages by arguing that it is not seriously revisionary of inferential practice. But if we 

avoid reliance on those numerous instances of the meta-rules condemned by 

supervaluationists only because we are unwilling to rely on numerous object-language 

arguments (like IIA) endorsed by  supervaluationists, their account is still highly revisionary. 

The case of IIA and IIB is far from an isolated example. Similar pairs of arguments can 

be constructed for any sorites-susceptible term. Graff Fara has presented a deadly serious 

challenge to the supervaluationist account of deductive validity for vague languages.12  
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3. Extensions 

 

In this section, I present some variations on Graff Fara’s theme. In the final section, I will 

comment on the prospects for restricting the meta-rules in the ways supervaluationists have 

proposed. 

 

 

3.1. Ambiguity 

 

In his classic presentation of a supervaluationist treatment of vagueness, Kit Fine describes 

vagueness as ‘ambiguity on a grand and systematic scale’, and gives it a supervaluationist 

treatment: ‘an ambiguous sentence is true if true for all disambiguations’ (Fine 1975: 282; 

Keefe 2000: 156-8 rejects the analogy). It is therefore significant that Graff Fara’s point 

applies even to the very simplest kind of ambiguity, under the supervaluationist treatment, 

in a language with no D operator or similar devices. 

 We start with a standard propositional language L, assumed free of vagueness, 

ambiguity, and additional operators. The semantics is the standard bivalent one, for which 

classical propositional logic is sound and complete. Let p and q be two atomic sentences in 

L; thus the semantics treats them as logically independent. We now expand L to a language 

L+ by adding one new atomic sentence r. The idea is to make r ambiguous between just two 

meanings, one that of p, the other that of q. For simplicity, we can identify points in the 

models for L+ with ordered pairs <a, j>, where a is an assignment of truth-values to atomic 

sentences of L and j is either 0 (flagging that r is disambiguated as p) or 1 (flagging that r is 

disambiguated as q). Thus any atomic sentence other than r is true at <a, j> if and only if it is 

true on a; r is true at <a, 0> if and only if p is true on a; r is true at <a, 1> if and only if q is 

true on a. The models for L+ correspond one-one with the original assignments a, where the 

set of points in the corresponding model is just {<a, 0>, <a, 1>}. The two points in any model 

are accessible from each other and from themselves; thus accessibility is always an 

equivalence relation. This implements the idea that supertruth is just truth on both 

disambiguations of r, the only source of ambiguity or vagueness in L+. Of course, when the 

models are restricted like this, the resulting regional consequence relation ⊨R is not purely 

logical, since a non-logical constraint on the truth-value of r has been built in, but that is just 

what we want for Graff Fara’s point. 

 Some simple observations can now be made. 

 [a] r ⊨R p, for if r is supertrue at <a, j> in a model, then r is true at <a, 0> in the 

model, so p is true on a, so p is true at both <a, 0> and <a, 1>, so p is supertrue at <a, j>. 

 [b] r ⊨R q, by an argument like that for [a]. 

 [c] r ⊨R p ↔ q, from [a] and [b] because p ↔ q follows classically from p and q.  

 [d] ¬r ⊨R ¬p, by an argument like that for [a]. 

 [e] ¬r ⊨R ¬q, by an argument like that for [a]. 

 [f] ¬r ⊨R p ↔ q, from [d] and [e], as for [c]. 

Consequently, if ⊨R obeys argument by cases, r ¬r ⊨R p ↔ q from [c] and [f], so ⊨R p ↔ q. 

But that is not so, for the semantics makes p and q mutually independent.  
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The other meta-rules fail similarly. For instance, conditional proof and contraposition 

fail, since r ⊨R p but neither ⊨R r → p nor ¬p ⊨R ¬r. Similarly, reductio ad absurdum fails 

because ¬p, r ⊨R   but not ¬p ⊨R ¬r. Under regional validity, the contested meta-rules 

enable one to exploit the ambiguity of r to treat its two readings as equivalent to each 

other. 

 The failure of the meta-rules does not depend on the simplicity of the example. The 

proof can be adapted to much more complex cases of ambiguity, involving other 

grammatical categories, more than two readings, pre-existing ambiguity and vagueness in 

the object-language, and so on. Moreover, as already emphasized, it does not depend on 

the presence of any special operators in the object-language for dealing with vagueness or 

ambiguity. 

 

 

3.2. Quantifier rules 

 

Although the failure of meta-rules for regional validity is usually discussed in the setting of 

propositional logic, it also affects some meta-rules for quantifiers. An example is a standard 

elimination rule for the existential quantifier: if from Γ {α(c)} one can derive β, and the 

constant c occurs nowhere in Г, α(x), or β, then from Γ { x α(x)} one can also derive β 

(with the usual restriction to avoid clash of variables in  x α(x)). In effect, this rule permits 

one to use an ‘arbitrary name’ in working out the consequences of an existential premise. 

For regional validity, the rule says that if Γ {α(c)} ⊨R β then Γ { x α(x)} ⊨R β, subject to 

the same restrictions. 

 To assess the rule, we must extend the model theory to handle quantifiers and 

individual variables. The main choice-point in doing so is whether we allow variation in the 

quantifier domain from one point of evaluation to another, corresponding to vagueness in 

how far the quantifiers range. To keep things simple, we assume that there is no such 

vagueness. In particular, we may specify that the quantifiers range precisely over the natural 

numbers. If the result is a non-logical consequence relation, that is consonant with Graff 

Fara’s argument. However, for the time being, we keep the operator D in the language. Let F 

be a monadic atomic predicate, and j an arbitrary name. Thus, for the same reason as in §1, 

Fj and ¬DFj are never both supertrue at a point in a model (on an assignment of values to 

variables). Since ¬n DFn is true only at those points where ¬DFj is true, ¬n DFn is 

supertrue only at those points where ¬DFj is supertrue. Thus Fj and ¬n DFn are never both 

true at a given point, so vacuously {¬n DFn, Fj} ⊨R  . Since j occurs nowhere in ¬n DFn 

and  , the existential elimination rule at issue for regional validity tells us that {¬n DFn, 

n Fn} ⊨R  . But that is not so. For consider a simple model where W = {j, …, j + k} (1 ≤ k), R is 

the universal relation over W, and the extension of F at i is {i} (j ≤ i ≤ j + k). Then n Fn is 

true at every point in the model. But, on any assignment of natural numbers to variables, 

DFn is false at every point because Fn is false at some point, so ¬n DFn is true at every 

point. Thus the argument from ¬n DFn and n Fn to   has supertrue premises and a 

superfalse conclusion at every point in the model. 

The model has a natural supervaluationist interpretation. For we can read Fn as ‘n is 

small and n + 1 is not small’, where ‘small’ is of course vague. Thus each point in the model 
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corresponds to a potential cut-off for ‘small’. On the standard supervaluationist view, it is 

definite both that there is a cut-off for smallness and that no number is definitely the cut-

off. Thus the counter-model to existential elimination respects the spirit as well as the letter 

of supervaluationism. Admittedly, the model rules out higher-order vagueness, but one can 

easily tweak it to admit that phenomenon while still providing a counter-model to 

existential elimination. 

That example depends on the D operator. But we can adapt Graff Fara’s own 

example to build a counterexample to existential elimination with no such operator. For 

consider these two sentences: 

 

CUTOFF Mary is tall and John is not tall and Mary is not more than a millimetre taller 

   than John. 

 

CUTOFF For some X, for some Y, X is tall and Y is not tall and X is not more than a 

   millimetre taller than Y. 

 

In the context Graff Fara envisages, CUTOFF is guaranteed not to be supertrue. Thus the 

argument from CUTOFF to a contradiction is materially regionally valid. Hence, if the 

existential elimination rule for English preserves material regional validity, then the 

argument from CUTOFF to a contradiction is also materially regionally valid, by two 

applications of the rule. But it is not. Given a sufficiently dense distribution of heights in the 

relevant population between the definitely tall and the definitely not tall, CUTOFF is 

supertrue. Thus the existential elimination rule fails for material regional validity even in the 

absence of operators that trade on vagueness. 

 

 

3.3. Mathematical notation 

 

Contrary to stereotype, some standard mathematical notation is deliberately left vague and 

context-dependent. For instance, the symbol ≈ is often used for approximate equality, 

typically of real numbers. For mathematical convenience, the required degree of 

approximation is left unspecified. Such uses yield further examples of Graff Fara’s 

phenomenon. 

 We can see this by building a toy supervaluationist model of how ≈ works in some 

simple contexts. Suppose that on each assignment there is a constant δ such that for all real 

numbers x and y, x ≈ y if and only if the absolute difference |x – y| < δ.13 The value of δ is 

left vague: it varies from assignment to assignment, subject to the constraint that 

0 < a ≤ δ ≤ b, where the model fixes a and b assignment-independently. The assignments 

correspond one-one with the members of the closed interval [a, b]. All assignments are 

mutually accessible; for simplicity, we exclude higher-vagueness, but including it would only 

slightly complicate the argument. The width of the interval [a, b] measures the degree of 

vagueness of ‘δ’. We suppose that it is reasonably wide, in the sense that 2a ≤ b. 

 Now consider the set of formulas {x ≈ y, y ≈ z, ¬x ≈ z}, which describes a counter-

example to the transitivity of approximate equality. Suppose that all three formulas are 
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supertrue together at some point in the model. Thus for all δ in [a, b], |x – y| < δ, 

|y – z| < δ, and |x – z| ≥ δ. Therefore, in particular, |x – y| < a, |y – z| < a, and |x – z| ≥ b. 

But then, by the triangle inequality for absolute difference: 

 

b ≤ |x – z| ≤ |x – y| + |y – z| < 2a ≤ b 

 

That is impossible, so the three formulas cannot be supertrue together. Thus the argument 

from {x ≈ y, y ≈ z, ¬x ≈ z} to a contradiction is regionally valid, in the material sense restricted 

to the context just described. Consequently, if this version of regional validity obeyed 

reductio ad absurdum, then the argument from {x ≈ y, y ≈ z} to x ≈ z would also be regionally 

valid. But it is not, for when x, y, and z take the values 0, 2a/3, and 4a/3 respectively, the 

argument’s premises are supertrue while its conclusion is not. Indeed, multiple instances of 

the argument from {x ≈ y, y ≈ z} to x ≈ z generate a sorites paradox, just as multiple instances 

of Graff Fara’s argument IIA did. From the same example one can easily construct 

counterexamples to the meta-rules of conditional proof, contraposition, argument by cases, 

and existential elimination too.  

 Another mathematical symbol deliberately left vague and context-dependent is <<: 

‘x << y’ is read ‘x is much less than y’. It generates more examples of Graff Fara’s 

phenomenon. That is unsurprising, for ‘x << y’ is similar in meaning to ‘x < y and not x ≈ y’. 

We can treat ‘x << y’ as equivalent to ‘x + δ < y’ in models like those above, though perhaps 

for different values of a and b. 

 Now consider the set of formulas {¬x << y, ¬y << z, x << z}. Suppose that all three 

formulas are supertrue together at some point in such a model. Thus for all δ in [a, b], 

x + δ ≥ y, y + δ ≥ z, and x + δ < z; hence x + 2δ ≥ y + δ ≥ z. Therefore, in particular, x + b < z 

and x + 2a ≥ z, so b < 2a, contrary to hypothesis. Hence the three formulas cannot be 

supertrue together. Thus the argument from {¬x << y, ¬y << z, x << z} to a contradiction is 

regionally valid, in the material sense restricted to this context. Consequently, if this version 

of regional validity obeyed reductio ad absurdum, the argument from {¬x << y, ¬y << z} to 

¬x << z would also be regionally valid. But it is not, as the previous assignment of values to 

the variables shows. Indeed, multiple instances of the argument from {¬x << y, ¬y << z} to 

¬x << z generate a sorites paradox, in the same way as before. Once again, from the 

example one can easily construct counterexamples to the meta-rules of conditional proof, 

contraposition, argument by cases, and existential elimination too.  

 

 

 

4. Morals 

 

The evidence from §3 confirms Graff Fara’s claim that the potential for violations of 

standard meta-rules by material forms of validity is extremely widespread. It extends to 

ordinary cases of ambiguity, to quantifier rules, and to many mathematical contexts. What 

morals should we draw from this?  

Graff Fara is clearly right that in practice we rarely care whether our deductions are 

valid by a purely logical standard or a looser, context-dependent one, reliant on background 
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assumptions. We are fine with arguments like ‘She lives in Paris, so she lives in France’, 

despite even their invalidity by a strictly logical standard. Even working mathematicians 

rarely care whether their proofs are logically valid, so long as they are mathematically valid. 

For example, they do not normally differentiate in status between standard set-theoretic 

principles, such as the power-set axiom, and purely logical principles, such as the law of 

excluded middle. They treat them all as part of the assumed background. A non-logical, 

material standard of consequence is operative. 

Suppose that, in a vague and sometimes ambiguous language, our deductive 

reasoning tends to accord with material regional validity: we tend to accept materially 

regionally valid deductions and reject materially regionally invalid ones. We must therefore 

be implicitly avoiding numerous nearby instances of the meta-rules that would take us from 

materially regionally valid arguments to materially regionally invalid ones. Yet, on the face of 

it, we freely apply conditional proof, reductio ad absurdum, contraposition, argument by 

cases, and existential elimination, without specially checking whether the instance in 

question is problematic for supervaluationist reasons. Did you monitor the purely technical 

parts of this paper for such fallacies? (Supervaluationists would in fact accept the informal 

proofs.) 

Obviously, in practice we rarely insert ‘definitely’ into the input or output of the 

meta-rules to ensure (material) regional validity. Do we instead apply qualified versions of 

the meta-rules with extra conditions on the status of the input argument, such as McGee 

and McLaughlin and others impose? Such proposals typically require the input argument to 

meet a more demanding standard of validity than regional validity. Thus, if ordinary 

reasoners pay attention to regional validity at all, they must keep track of two standards of 

validity, and of which arguments meet which standard, if they are to be in a position to 

apply the qualified versions of conditional proof, reductio ad absurdum, contraposition, 

argument by cases, and existential elimination. In particular, they must be sensitive to the 

status of some of their arguments as merely regionally valid: good enough for the truth of 

their conclusions given the truth of their premises, but not good enough to serve as inputs 

to the qualified meta-rules. That we habitually do any such thing is far from obvious. If 

mathematicians assign such a differential status to some of their proofs, why do they never 

speak of it? 

One hypothesis is that we accept regionally valid arguments, and make free but illicit 

use of the unqualified meta-rules, because we are unaware of the fallacies. On that 

hypothesis, our reasoning should get us into serious trouble. Does it? A first thought is that 

we do get into serious trouble: slippery slopes and sorites paradoxes. However, it is not 

clear that our problems there depend on illicit use of the meta-rules. For if they do, why are 

the problems so limited, when their cause is almost ubiquitous? Why do mathematicians 

not get into trouble with their use of symbols like ≈ and <<? After all, mathematicians are 

the people who give our patterns of deductive reasoning their most systematic and severe 

stress-testing. 

Consider ambiguity as a toy model of vagueness, as supervaluationists such as Fine 

have done. Of course, ambiguity does sometimes get us into trouble: there are fallacies of 

equivocation. Sometimes we argue from α to β(e), using the expression e in one sense, and 

then from β(e) to γ, using e in another sense, and put the two arguments together to make 
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an argument from α to γ that is not truth-preserving on any sense of e (which is absent from 

both α and γ). But our problem there does not depend on any of the meta-rules that fail for 

material regional validity. Once we recognize the ambiguity in an expression, we are not 

tempted to reason with it according to material regional validity. This argument is an 

example (with no shift of reference in ‘that’): 

 

Argument BANK 

That is a bank. 

Therefore, that is both a financial bank and a river bank. 

 

BANK is untempting, to say the least. However one disambiguates the premise, the 

conclusion does not follow, even materially. Yet BANK is materially regionally valid, on a 

supervaluationist treatment of ambiguity: if the premise is true on both disambiguations, 

the conclusion is true (compare §3.2, [a] and [b]). Of course, committed supervaluationists 

may be able to talk themselves into accepting the validity of BANK. But it does not come 

naturally to reason according to BANK. 

 The same goes for vagueness proper. For instance, when I think as a mathematician, 

I feel no temptation to regard {x ≈ y, y ≈ z, ¬x ≈ z} as an inconsistent set. After all, the symbol 

≈ means approximate equality, and who expects approximate equality to be transitive? 

Similarly, Graff Fara’s argument IIB does not come naturally, despite its material regional 

validity in a suitable context. The obvious hypothesis as to why our free, unqualified use of 

the meta-rules does not get us into trouble is that we do not accept the materially regionally 

valid input arguments that make the trouble. Supervaluationism is far more revisionary of 

our current practice than supervaluationists like to assume. 

 Ought we to tailor our deductive practices to material regional validity? Its failure to 

validate conditional proof, reductio ad absurdum, contraposition, argument by cases, and 

existential elimination is a strong reason not to. As already noted, using the qualified 

versions instead of them carries a heavy cognitive burden, for no clear gain.14 

 I will not labour the case. Graff Fara’s point goes too deep for any technical fix. 

Supervaluationists need to undertake a far more searching investigation of what our 

deductive practice would really be like if properly tailored to context-dependent material 

regional validity. In this, as in so much else, she has left us a rewarding challenge for the 

future.15  
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Notes 

 

 

1 Delia characterizes herself as an epistemicist at Graff 2003: 216. Elsewhere she 

comments that boundary-shifting theories of vagueness, whether contextualist 

or her own interest-relative invariantist theory, ‘are not in competition with any 

particular account of what it is to be a borderline case of a vague predicate’ 

(Graff Fara 2010: 379n13). 

 

2 For simplicity, the object-language is assumed to contain only declarative 

sentences. 

 

3 One would not expect ‘x is reasonable according to w’ to be a transitive relation 

(Williamson 1994: 159). Indeed, arguments against the S4 principle Dα → DDα, 

corresponding to transitivity, can be modelled on some arguments against the 

analogous KK principle for knowledge, even within the supervaluationist 

framework (Williamson 1994: 217-226, 1999). For arguments against the B 

principle α → D¬D¬α, corresponding to symmetry, see Mahtani 2008 and Dorr 

2015. For a theory of vagueness on which transitivity holds but symmetry fails, 

see Bobzien 2011. 

 

4 The distinction between global and regional validity is also involved in the debate 

between Cobreros (2008) and Graff Fara (2011) on higher-order vagueness. 

 

5 Proof: Suppose that Γ {α} entails β. Hence Γ {α ¬β} entails  . Hence, by 

reductio ad absurdum, Γ entails ¬(α ¬β); equally, by contraposition, Γ {¬ } 

entails ¬(α ¬β); in both cases, Γ entails α → β. Also, from the original 

supposition, Γ {α} entails α → β. Moreover, {¬α} entails α → β. Hence, by 

argument by cases, Γ entails α → β. The proofs assume that any set of premises 

entails its classical truth-functional consequences and that entailment obeys the 

standard structural rules for logical consequence, in particular the cut rule; these 

assumptions hold for both global and regional validity.  

 

6 One can also consider an alternative consequence relation that holds between 

premises and conclusion if and only if (i) whenever the conjunction of the 

premises is supertrue, the conclusion is superfalse and (ii) whenever the 

conclusion is superfalse then the conjunction of the premises is superfalse. 

However, since p ¬Dp is never supertrue, ¬(p ¬Dp) is never superfalse, so p

¬Dp entails ¬(p ¬Dp) vacuously in this new sense; thus (p ¬Dp) → ¬(p ¬Dp) 

and so p → Dp would be valid if this new sense validated conditional proof, 

which it consequently does not. Moreover, since p ¬Dp entails each of p ¬Dp 

and ¬(p ¬Dp) but not their conjunction in the new sense, it does not provide 

the conjunction introduction rule.    
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7 Unclarity on which object-language the meta-rules concern vitiates the objection 

in Hjortland 2017: 639-40 to the account of logical consequence in Williamson 

2013: 92-5 and 2017. 

 

8 See McGee and McLaughlin 1997: 224, to which Williamson 2004: 119-20 replies; 

they later acknowledged the slip (McGee and McLaughlin 2004: 134). 

 

9 An example is Williams 2008, where each model has both an accessibility relation 

over all delineations (points) and an independently specified subset of 

delineations, whose members are called sharpenings. Supertruth in a model is 

defined as truth on all sharpenings, and ‘global’ validity as preservation of 

supertruth in each model. Key arguments then exploit models where, for each 

delineation, the set of accessible delineations differs from the set of sharpenings; 

thus the model’s own view of which delineations are ‘reasonable’ differs from 

that of any delineation countenanced within the model. This flouts the point of 

the D operator, which is to project supertruth into the object-language.   

 

10 Her model-theoretic framework differs slightly from the present one, but not in 

ways that matter for present purposes. 

 

11 To generate a sorites paradox from multiple instances of IIA, one needs the 

structural rule of Cut: if Г entails α and Δ {α} entails β then Г Δ entails β. Cut 

holds even for restricted versions of regional validity, for if all members of Г Δ 

are supertrue at a point w, then α is supertrue at w if the argument from Г to α 

preserves supertruth, so β is supertrue at w if the argument from Δ {α} to β 

preserves supertruth; likewise for global validity. 

 

12 In Graff 2003, Graff Fara draws together her argument about supervaluationist 

consequence relations with considerations about higher-order vagueness from 

the first half of the paper to complete an argument against supervaluationist 

treatments of higher-order vagueness. In Graff Fara 2010, she extends her 

critique of supervaluationist accounts of the logic of vague languages. There is no 

space here to discuss these powerful further arguments. 

 

13 Pedantically speaking, the three object-language variables ‘x’, ‘y’, and ‘z’ will be 

used in the meta-language for their values on the given assignment. 

 

14 Cobreros (2010) describes a procedure for obtaining proof systems for global 

validity from proof systems for local validity, where the global proof differs from 

the local proof in only one step. However, Graff Fara’s examples and mine 

suggest that no such mechanical procedure will extend to material global and 

regional validity. 
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